mirror of
				https://github.com/RaySollium99/picodrive.git
				synced 2025-10-27 21:48:50 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			147 lines
		
	
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			147 lines
		
	
	
	
		
			4.5 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* @(#)e_log.c 5.1 93/09/24 */
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| #if defined(LIBM_SCCS) && !defined(lint)
 | |
| static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $";
 | |
| #endif
 | |
| 
 | |
| /* __ieee754_log(x)
 | |
|  * Return the logrithm of x
 | |
|  *
 | |
|  * Method :
 | |
|  *   1. Argument Reduction: find k and f such that
 | |
|  *			x = 2^k * (1+f),
 | |
|  *	   where  sqrt(2)/2 < 1+f < sqrt(2) .
 | |
|  *
 | |
|  *   2. Approximation of log(1+f).
 | |
|  *	Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
 | |
|  *		 = 2s + 2/3 s**3 + 2/5 s**5 + .....,
 | |
|  *	     	 = 2s + s*R
 | |
|  *      We use a special Reme algorithm on [0,0.1716] to generate
 | |
|  * 	a polynomial of degree 14 to approximate R The maximum error
 | |
|  *	of this polynomial approximation is bounded by 2**-58.45. In
 | |
|  *	other words,
 | |
|  *		        2      4      6      8      10      12      14
 | |
|  *	    R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
 | |
|  *  	(the values of Lg1 to Lg7 are listed in the program)
 | |
|  *	and
 | |
|  *	    |      2          14          |     -58.45
 | |
|  *	    | Lg1*s +...+Lg7*s    -  R(z) | <= 2
 | |
|  *	    |                             |
 | |
|  *	Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
 | |
|  *	In order to guarantee error in log below 1ulp, we compute log
 | |
|  *	by
 | |
|  *		log(1+f) = f - s*(f - R)	(if f is not too large)
 | |
|  *		log(1+f) = f - (hfsq - s*(hfsq+R)).	(better accuracy)
 | |
|  *
 | |
|  *	3. Finally,  log(x) = k*ln2 + log(1+f).
 | |
|  *			    = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
 | |
|  *	   Here ln2 is split into two floating point number:
 | |
|  *			ln2_hi + ln2_lo,
 | |
|  *	   where n*ln2_hi is always exact for |n| < 2000.
 | |
|  *
 | |
|  * Special cases:
 | |
|  *	log(x) is NaN with signal if x < 0 (including -INF) ;
 | |
|  *	log(+INF) is +INF; log(0) is -INF with signal;
 | |
|  *	log(NaN) is that NaN with no signal.
 | |
|  *
 | |
|  * Accuracy:
 | |
|  *	according to an error analysis, the error is always less than
 | |
|  *	1 ulp (unit in the last place).
 | |
|  *
 | |
|  * Constants:
 | |
|  * The hexadecimal values are the intended ones for the following
 | |
|  * constants. The decimal values may be used, provided that the
 | |
|  * compiler will convert from decimal to binary accurately enough
 | |
|  * to produce the hexadecimal values shown.
 | |
|  */
 | |
| 
 | |
| #include "math.h"
 | |
| #include "math_private.h"
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const double
 | |
| #else
 | |
| static double
 | |
| #endif
 | |
| ln2_hi  =  6.93147180369123816490e-01,	/* 3fe62e42 fee00000 */
 | |
| ln2_lo  =  1.90821492927058770002e-10,	/* 3dea39ef 35793c76 */
 | |
| two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
 | |
| Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
 | |
| Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
 | |
| Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
 | |
| Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
 | |
| Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
 | |
| Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
 | |
| Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const double zero   =  0.0;
 | |
| #else
 | |
| static double zero   =  0.0;
 | |
| #endif
 | |
| 
 | |
| #ifdef __STDC__
 | |
| 	double __ieee754_log(double x)
 | |
| #else
 | |
| 	double __ieee754_log(x)
 | |
| 	double x;
 | |
| #endif
 | |
| {
 | |
| 	double hfsq,f,s,z,R,w,t1,t2,dk;
 | |
| 	int32_t k,hx,i,j;
 | |
| 	u_int32_t lx;
 | |
| 
 | |
| 	EXTRACT_WORDS(hx,lx,x);
 | |
| 
 | |
| 	k=0;
 | |
| 	if (hx < 0x00100000) {			/* x < 2**-1022  */
 | |
| 	    if (((hx&0x7fffffff)|lx)==0)
 | |
| 		return -two54/zero;		/* log(+-0)=-inf */
 | |
| 	    if (hx<0) return (x-x)/zero;	/* log(-#) = NaN */
 | |
| 	    k -= 54; x *= two54; /* subnormal number, scale up x */
 | |
| 	    GET_HIGH_WORD(hx,x);
 | |
| 	}
 | |
| 	if (hx >= 0x7ff00000) return x+x;
 | |
| 	k += (hx>>20)-1023;
 | |
| 	hx &= 0x000fffff;
 | |
| 	i = (hx+0x95f64)&0x100000;
 | |
| 	SET_HIGH_WORD(x,hx|(i^0x3ff00000));	/* normalize x or x/2 */
 | |
| 	k += (i>>20);
 | |
| 	f = x-1.0;
 | |
| 	if((0x000fffff&(2+hx))<3) {	/* |f| < 2**-20 */
 | |
| 	    if(f==zero) {if(k==0) return zero;  else {dk=(double)k;
 | |
| 				 return dk*ln2_hi+dk*ln2_lo;}
 | |
| 	    }
 | |
| 	    R = f*f*(0.5-0.33333333333333333*f);
 | |
| 	    if(k==0) return f-R; else {dk=(double)k;
 | |
| 	    	     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
 | |
| 	}
 | |
|  	s = f/(2.0+f);
 | |
| 	dk = (double)k;
 | |
| 	z = s*s;
 | |
| 	i = hx-0x6147a;
 | |
| 	w = z*z;
 | |
| 	j = 0x6b851-hx;
 | |
| 	t1= w*(Lg2+w*(Lg4+w*Lg6));
 | |
| 	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
 | |
| 	i |= j;
 | |
| 	R = t2+t1;
 | |
| 	if(i>0) {
 | |
| 	    hfsq=0.5*f*f;
 | |
| 	    if(k==0) return f-(hfsq-s*(hfsq+R)); else
 | |
| 		     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
 | |
| 	} else {
 | |
| 	    if(k==0) return f-s*(f-R); else
 | |
| 		     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
 | |
| 	}
 | |
| }
 | 
