mirror of
				https://github.com/RaySollium99/picodrive.git
				synced 2025-10-27 21:48:50 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			308 lines
		
	
	
	
		
			9.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			308 lines
		
	
	
	
		
			9.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* @(#)e_pow.c 5.1 93/09/24 */
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| #if defined(LIBM_SCCS) && !defined(lint)
 | |
| static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $";
 | |
| #endif
 | |
| 
 | |
| /* __ieee754_pow(x,y) return x**y
 | |
|  *
 | |
|  *		      n
 | |
|  * Method:  Let x =  2   * (1+f)
 | |
|  *	1. Compute and return log2(x) in two pieces:
 | |
|  *		log2(x) = w1 + w2,
 | |
|  *	   where w1 has 53-24 = 29 bit trailing zeros.
 | |
|  *	2. Perform y*log2(x) = n+y' by simulating muti-precision
 | |
|  *	   arithmetic, where |y'|<=0.5.
 | |
|  *	3. Return x**y = 2**n*exp(y'*log2)
 | |
|  *
 | |
|  * Special cases:
 | |
|  *	1.  (anything) ** 0  is 1
 | |
|  *	2.  (anything) ** 1  is itself
 | |
|  *	3.  (anything) ** NAN is NAN
 | |
|  *	4.  NAN ** (anything except 0) is NAN
 | |
|  *	5.  +-(|x| > 1) **  +INF is +INF
 | |
|  *	6.  +-(|x| > 1) **  -INF is +0
 | |
|  *	7.  +-(|x| < 1) **  +INF is +0
 | |
|  *	8.  +-(|x| < 1) **  -INF is +INF
 | |
|  *	9.  +-1         ** +-INF is NAN
 | |
|  *	10. +0 ** (+anything except 0, NAN)               is +0
 | |
|  *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
 | |
|  *	12. +0 ** (-anything except 0, NAN)               is +INF
 | |
|  *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
 | |
|  *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
 | |
|  *	15. +INF ** (+anything except 0,NAN) is +INF
 | |
|  *	16. +INF ** (-anything except 0,NAN) is +0
 | |
|  *	17. -INF ** (anything)  = -0 ** (-anything)
 | |
|  *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
 | |
|  *	19. (-anything except 0 and inf) ** (non-integer) is NAN
 | |
|  *
 | |
|  * Accuracy:
 | |
|  *	pow(x,y) returns x**y nearly rounded. In particular
 | |
|  *			pow(integer,integer)
 | |
|  *	always returns the correct integer provided it is
 | |
|  *	representable.
 | |
|  *
 | |
|  * Constants :
 | |
|  * The hexadecimal values are the intended ones for the following
 | |
|  * constants. The decimal values may be used, provided that the
 | |
|  * compiler will convert from decimal to binary accurately enough
 | |
|  * to produce the hexadecimal values shown.
 | |
|  */
 | |
| 
 | |
| #include "math.h"
 | |
| #include "math_private.h"
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const double
 | |
| #else
 | |
| static double
 | |
| #endif
 | |
| bp[] = {1.0, 1.5,},
 | |
| dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
 | |
| dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
 | |
| zero    =  0.0,
 | |
| one	=  1.0,
 | |
| two	=  2.0,
 | |
| two53	=  9007199254740992.0,	/* 0x43400000, 0x00000000 */
 | |
| huge	=  1.0e300,
 | |
| tiny    =  1.0e-300,
 | |
| 	/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
 | |
| L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
 | |
| L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
 | |
| L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
 | |
| L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
 | |
| L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
 | |
| L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
 | |
| P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
 | |
| P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
 | |
| P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
 | |
| P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
 | |
| P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
 | |
| lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
 | |
| lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
 | |
| lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
 | |
| ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
 | |
| cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
 | |
| cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
 | |
| cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
 | |
| ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
 | |
| ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
 | |
| ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
 | |
| 
 | |
| #ifdef __STDC__
 | |
| 	double __ieee754_pow(double x, double y)
 | |
| #else
 | |
| 	double __ieee754_pow(x,y)
 | |
| 	double x, y;
 | |
| #endif
 | |
| {
 | |
| 	double z,ax,z_h,z_l,p_h,p_l;
 | |
| 	double y1,t1,t2,r,s,t,u,v,w;
 | |
| 	int32_t i,j,k,yisint,n;
 | |
| 	int32_t hx,hy,ix,iy;
 | |
| 	u_int32_t lx,ly;
 | |
| 
 | |
| 	EXTRACT_WORDS(hx,lx,x);
 | |
| 	EXTRACT_WORDS(hy,ly,y);
 | |
| 	ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
 | |
| 
 | |
|     /* y==zero: x**0 = 1 */
 | |
| 	if((iy|ly)==0) return one;
 | |
| 
 | |
|     /* +-NaN return x+y */
 | |
| 	if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
 | |
| 	   iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
 | |
| 		return x+y;
 | |
| 
 | |
|     /* determine if y is an odd int when x < 0
 | |
|      * yisint = 0	... y is not an integer
 | |
|      * yisint = 1	... y is an odd int
 | |
|      * yisint = 2	... y is an even int
 | |
|      */
 | |
| 	yisint  = 0;
 | |
| 	if(hx<0) {
 | |
| 	    if(iy>=0x43400000) yisint = 2; /* even integer y */
 | |
| 	    else if(iy>=0x3ff00000) {
 | |
| 		k = (iy>>20)-0x3ff;	   /* exponent */
 | |
| 		if(k>20) {
 | |
| 		    j = ly>>(52-k);
 | |
| 		    if((j<<(52-k))==ly) yisint = 2-(j&1);
 | |
| 		} else if(ly==0) {
 | |
| 		    j = iy>>(20-k);
 | |
| 		    if((j<<(20-k))==iy) yisint = 2-(j&1);
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     /* special value of y */
 | |
| 	if(ly==0) {
 | |
| 	    if (iy==0x7ff00000) {	/* y is +-inf */
 | |
| 	        if(((ix-0x3ff00000)|lx)==0)
 | |
| 		    return  y - y;	/* inf**+-1 is NaN */
 | |
| 	        else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
 | |
| 		    return (hy>=0)? y: zero;
 | |
| 	        else			/* (|x|<1)**-,+inf = inf,0 */
 | |
| 		    return (hy<0)?-y: zero;
 | |
| 	    }
 | |
| 	    if(iy==0x3ff00000) {	/* y is  +-1 */
 | |
| 		if(hy<0) return one/x; else return x;
 | |
| 	    }
 | |
| 	    if(hy==0x40000000) return x*x; /* y is  2 */
 | |
| 	    if(hy==0x3fe00000) {	/* y is  0.5 */
 | |
| 		if(hx>=0)	/* x >= +0 */
 | |
| 		return __ieee754_sqrt(x);
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	ax   = fabs(x);
 | |
|     /* special value of x */
 | |
| 	if(lx==0) {
 | |
| 	    if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
 | |
| 		z = ax;			/*x is +-0,+-inf,+-1*/
 | |
| 		if(hy<0) z = one/z;	/* z = (1/|x|) */
 | |
| 		if(hx<0) {
 | |
| 		    if(((ix-0x3ff00000)|yisint)==0) {
 | |
| 			z = (z-z)/(z-z); /* (-1)**non-int is NaN */
 | |
| 		    } else if(yisint==1)
 | |
| 			z = -z;		/* (x<0)**odd = -(|x|**odd) */
 | |
| 		}
 | |
| 		return z;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     /* (x<0)**(non-int) is NaN */
 | |
| 	if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);
 | |
| 
 | |
|     /* |y| is huge */
 | |
| 	if(iy>0x41e00000) { /* if |y| > 2**31 */
 | |
| 	    if(iy>0x43f00000){	/* if |y| > 2**64, must o/uflow */
 | |
| 		if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
 | |
| 		if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
 | |
| 	    }
 | |
| 	/* over/underflow if x is not close to one */
 | |
| 	    if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
 | |
| 	    if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
 | |
| 	/* now |1-x| is tiny <= 2**-20, suffice to compute
 | |
| 	   log(x) by x-x^2/2+x^3/3-x^4/4 */
 | |
| 	    t = x-1;		/* t has 20 trailing zeros */
 | |
| 	    w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
 | |
| 	    u = ivln2_h*t;	/* ivln2_h has 21 sig. bits */
 | |
| 	    v = t*ivln2_l-w*ivln2;
 | |
| 	    t1 = u+v;
 | |
| 	    SET_LOW_WORD(t1,0);
 | |
| 	    t2 = v-(t1-u);
 | |
| 	} else {
 | |
| 	    double s2,s_h,s_l,t_h,t_l;
 | |
| 	    n = 0;
 | |
| 	/* take care subnormal number */
 | |
| 	    if(ix<0x00100000)
 | |
| 		{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
 | |
| 	    n  += ((ix)>>20)-0x3ff;
 | |
| 	    j  = ix&0x000fffff;
 | |
| 	/* determine interval */
 | |
| 	    ix = j|0x3ff00000;		/* normalize ix */
 | |
| 	    if(j<=0x3988E) k=0;		/* |x|<sqrt(3/2) */
 | |
| 	    else if(j<0xBB67A) k=1;	/* |x|<sqrt(3)   */
 | |
| 	    else {k=0;n+=1;ix -= 0x00100000;}
 | |
| 	    SET_HIGH_WORD(ax,ix);
 | |
| 
 | |
| 	/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
 | |
| 	    u = ax-bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
 | |
| 	    v = one/(ax+bp[k]);
 | |
| 	    s = u*v;
 | |
| 	    s_h = s;
 | |
| 	    SET_LOW_WORD(s_h,0);
 | |
| 	/* t_h=ax+bp[k] High */
 | |
| 	    t_h = zero;
 | |
| 	    SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
 | |
| 	    t_l = ax - (t_h-bp[k]);
 | |
| 	    s_l = v*((u-s_h*t_h)-s_h*t_l);
 | |
| 	/* compute log(ax) */
 | |
| 	    s2 = s*s;
 | |
| 	    r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
 | |
| 	    r += s_l*(s_h+s);
 | |
| 	    s2  = s_h*s_h;
 | |
| 	    t_h = 3.0+s2+r;
 | |
| 	    SET_LOW_WORD(t_h,0);
 | |
| 	    t_l = r-((t_h-3.0)-s2);
 | |
| 	/* u+v = s*(1+...) */
 | |
| 	    u = s_h*t_h;
 | |
| 	    v = s_l*t_h+t_l*s;
 | |
| 	/* 2/(3log2)*(s+...) */
 | |
| 	    p_h = u+v;
 | |
| 	    SET_LOW_WORD(p_h,0);
 | |
| 	    p_l = v-(p_h-u);
 | |
| 	    z_h = cp_h*p_h;		/* cp_h+cp_l = 2/(3*log2) */
 | |
| 	    z_l = cp_l*p_h+p_l*cp+dp_l[k];
 | |
| 	/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
 | |
| 	    t = (double)n;
 | |
| 	    t1 = (((z_h+z_l)+dp_h[k])+t);
 | |
| 	    SET_LOW_WORD(t1,0);
 | |
| 	    t2 = z_l-(((t1-t)-dp_h[k])-z_h);
 | |
| 	}
 | |
| 
 | |
| 	s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
 | |
| 	if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
 | |
| 	    s = -one;/* (-ve)**(odd int) */
 | |
| 
 | |
|     /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
 | |
| 	y1  = y;
 | |
| 	SET_LOW_WORD(y1,0);
 | |
| 	p_l = (y-y1)*t1+y*t2;
 | |
| 	p_h = y1*t1;
 | |
| 	z = p_l+p_h;
 | |
| 	EXTRACT_WORDS(j,i,z);
 | |
| 	if (j>=0x40900000) {				/* z >= 1024 */
 | |
| 	    if(((j-0x40900000)|i)!=0)			/* if z > 1024 */
 | |
| 		return s*huge*huge;			/* overflow */
 | |
| 	    else {
 | |
| 		if(p_l+ovt>z-p_h) return s*huge*huge;	/* overflow */
 | |
| 	    }
 | |
| 	} else if((j&0x7fffffff)>=0x4090cc00 ) {	/* z <= -1075 */
 | |
| 	    if(((j-0xc090cc00)|i)!=0) 		/* z < -1075 */
 | |
| 		return s*tiny*tiny;		/* underflow */
 | |
| 	    else {
 | |
| 		if(p_l<=z-p_h) return s*tiny*tiny;	/* underflow */
 | |
| 	    }
 | |
| 	}
 | |
|     /*
 | |
|      * compute 2**(p_h+p_l)
 | |
|      */
 | |
| 	i = j&0x7fffffff;
 | |
| 	k = (i>>20)-0x3ff;
 | |
| 	n = 0;
 | |
| 	if(i>0x3fe00000) {		/* if |z| > 0.5, set n = [z+0.5] */
 | |
| 	    n = j+(0x00100000>>(k+1));
 | |
| 	    k = ((n&0x7fffffff)>>20)-0x3ff;	/* new k for n */
 | |
| 	    t = zero;
 | |
| 	    SET_HIGH_WORD(t,n&~(0x000fffff>>k));
 | |
| 	    n = ((n&0x000fffff)|0x00100000)>>(20-k);
 | |
| 	    if(j<0) n = -n;
 | |
| 	    p_h -= t;
 | |
| 	}
 | |
| 	t = p_l+p_h;
 | |
| 	SET_LOW_WORD(t,0);
 | |
| 	u = t*lg2_h;
 | |
| 	v = (p_l-(t-p_h))*lg2+t*lg2_l;
 | |
| 	z = u+v;
 | |
| 	w = v-(z-u);
 | |
| 	t  = z*z;
 | |
| 	t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
 | |
| 	r  = (z*t1)/(t1-two)-(w+z*w);
 | |
| 	z  = one-(r-z);
 | |
| 	GET_HIGH_WORD(j,z);
 | |
| 	j += (n<<20);
 | |
| 	if((j>>20)<=0) z = scalbn(z,n);	/* subnormal output */
 | |
| 	else SET_HIGH_WORD(z,j);
 | |
| 	return s*z;
 | |
| }
 | 
