picodrive/pico/sound/sound.c
2024-01-23 22:21:15 +01:00

625 lines
18 KiB
C

/*
* PicoDrive
* (c) Copyright Dave, 2004
* (C) notaz, 2006-2009
*
* This work is licensed under the terms of MAME license.
* See COPYING file in the top-level directory.
*/
#include <string.h>
#include "../pico_int.h"
#include "ym2612.h"
#include "sn76496.h"
#include "emu2413/emu2413.h"
#include "resampler.h"
#include "mix.h"
void (*PsndMix_32_to_16)(s16 *dest, s32 *src, int count) = mix_32_to_16_stereo;
// master int buffer to mix to
// +1 for a fill triggered by an instruction overhanging into the next scanline
static s32 PsndBuffer[2*(54000+100)/50+2];
// cdda output buffer
s16 cdda_out_buffer[2*1152];
// sn76496
extern int *sn76496_regs;
// FM resampling polyphase FIR
static resampler_t *fmresampler;
static int (*PsndFMUpdate)(s32 *buffer, int length, int stereo, int is_buf_empty);
// ym2413
static OPLL *opll = NULL;
static OPLL old_opll;
static struct {
uint32_t adr;
uint8_t reg[sizeof(opll->reg)];
} opll_buf;
void YM2413_regWrite(unsigned data){
OPLL_writeIO(opll,0,data);
}
void YM2413_dataWrite(unsigned data){
OPLL_writeIO(opll,1,data);
}
PICO_INTERNAL void *YM2413GetRegs(void)
{
memcpy(opll_buf.reg, opll->reg, sizeof(opll->reg));
opll_buf.adr = opll->adr;
return &opll_buf;
}
PICO_INTERNAL void YM2413UnpackState(void)
{
int i;
for (i = sizeof(opll->reg)-1; i >= 0; i--) {
OPLL_writeIO(opll, 0, i);
OPLL_writeIO(opll, 1, opll_buf.reg[i]);
}
opll->adr = opll_buf.adr;
}
PICO_INTERNAL void PsndInit(void)
{
opll = OPLL_new(OSC_NTSC/15, OSC_NTSC/15/72);
OPLL_setChipType(opll,0);
OPLL_reset(opll);
}
PICO_INTERNAL void PsndExit(void)
{
OPLL_delete(opll);
opll = NULL;
resampler_free(fmresampler); fmresampler = NULL;
}
PICO_INTERNAL void PsndReset(void)
{
// PsndRerate calls YM2612Init, which also resets
PsndRerate(0);
timers_reset();
}
// FM polyphase FIR resampling
#define FMFIR_TAPS 9
// resample FM from its native 53267Hz/52781Hz with polyphase FIR filter
static int ymchans;
static void YM2612Update(s32 *buffer, int length, int stereo)
{
ymchans = YM2612UpdateOne(buffer, length, stereo, 1);
}
static int YM2612UpdateFIR(s32 *buffer, int length, int stereo, int is_buf_empty)
{
resampler_update(fmresampler, buffer, length, YM2612Update);
return ymchans;
}
// resample SMS FM from its native 49716Hz/49262Hz with polyphase FIR filter
static void YM2413Update(s32 *buffer, int length, int stereo)
{
while (length-- > 0) {
int16_t getdata = OPLL_calc(opll) * 3;
*buffer++ = getdata;
buffer += stereo; // only left for stereo, to be mixed to right later
}
}
static int YM2413UpdateFIR(s32 *buffer, int length, int stereo, int is_buf_empty)
{
if (!is_buf_empty) memset(buffer, 0, (length << stereo) * sizeof(*buffer));
resampler_update(fmresampler, buffer, length, YM2413Update);
return 0;
}
// FIR setup, looks for a close enough rational number matching the ratio
static void YMFM_setup_FIR(int inrate, int outrate, int stereo)
{
int mindiff = 999;
int diff, mul, div;
int minmult = 22, maxmult = 55; // min,max interpolation factor
// compute filter ratio with largest multiplier for smallest error
for (mul = minmult; mul <= maxmult; mul++) {
div = (inrate*mul + outrate/2) / outrate;
diff = outrate*div/mul - inrate;
if (abs(diff) < abs(mindiff)) {
mindiff = diff;
Pico.snd.fm_fir_mul = mul;
Pico.snd.fm_fir_div = div;
if (abs(mindiff) <= inrate/1000+1) break; // below error limit
}
}
printf("FM polyphase FIR ratio=%d/%d error=%.3f%%\n",
Pico.snd.fm_fir_mul, Pico.snd.fm_fir_div, 100.0*mindiff/inrate);
resampler_free(fmresampler);
fmresampler = resampler_new(FMFIR_TAPS, Pico.snd.fm_fir_mul, Pico.snd.fm_fir_div,
0.85, 2, 2*inrate/50, stereo);
}
// wrapper for the YM2612UpdateONE macro
static int YM2612UpdateONE(s32 *buffer, int length, int stereo, int is_buf_empty)
{
return YM2612UpdateOne(buffer, length, stereo, is_buf_empty);
}
// to be called after changing sound rate or chips
void PsndRerate(int preserve_state)
{
void *state = NULL;
int target_fps = Pico.m.pal ? 50 : 60;
int target_lines = Pico.m.pal ? 313 : 262;
int sms_clock = Pico.m.pal ? OSC_PAL/15 : OSC_NTSC/15;
int ym2612_clock = Pico.m.pal ? OSC_PAL/7 : OSC_NTSC/7;
int ym2612_rate = YM2612_NATIVE_RATE();
int ym2413_rate = (sms_clock + 36) / 72;
if (preserve_state) {
state = malloc(0x204);
if (state == NULL) return;
ym2612_pack_state();
memcpy(state, YM2612GetRegs(), 0x204);
if (opll != NULL)
memcpy(&old_opll, opll, sizeof(OPLL)); // remember old state
}
if (PicoIn.AHW & PAHW_SMS) {
OPLL_setRate(opll, ym2413_rate);
OPLL_reset(opll);
YMFM_setup_FIR(ym2413_rate, PicoIn.sndRate, 0);
PsndFMUpdate = YM2413UpdateFIR;
} else if ((PicoIn.opt & POPT_EN_FM_FILTER) && ym2612_rate != PicoIn.sndRate) {
// polyphase FIR resampler, resampling directly from native to output rate
YM2612Init(ym2612_clock, ym2612_rate,
((PicoIn.opt&POPT_DIS_FM_SSGEG) ? 0 : ST_SSG) |
((PicoIn.opt&POPT_EN_FM_DAC) ? ST_DAC : 0));
YMFM_setup_FIR(ym2612_rate, PicoIn.sndRate, PicoIn.opt & POPT_EN_STEREO);
PsndFMUpdate = YM2612UpdateFIR;
} else {
YM2612Init(ym2612_clock, PicoIn.sndRate,
((PicoIn.opt&POPT_DIS_FM_SSGEG) ? 0 : ST_SSG) |
((PicoIn.opt&POPT_EN_FM_DAC) ? ST_DAC : 0));
PsndFMUpdate = YM2612UpdateONE;
}
if (preserve_state) {
// feed it back it's own registers, just like after loading state
memcpy(YM2612GetRegs(), state, 0x204);
ym2612_unpack_state();
if (opll != NULL) {
memcpy(&opll->adr, &old_opll.adr, sizeof(OPLL)-20); // restore old state
OPLL_forceRefresh(opll);
}
}
if (preserve_state) memcpy(state, sn76496_regs, 28*4); // remember old state
SN76496_init(Pico.m.pal ? OSC_PAL/15 : OSC_NTSC/15, PicoIn.sndRate);
if (preserve_state) memcpy(sn76496_regs, state, 28*4); // restore old state
if (state)
free(state);
// calculate Pico.snd.len
Pico.snd.len = PicoIn.sndRate / target_fps;
Pico.snd.len_e_add = ((PicoIn.sndRate - Pico.snd.len * target_fps) << 16) / target_fps;
Pico.snd.len_e_cnt = 0; // Q16
// samples per line (Q16)
Pico.snd.smpl_mult = 65536LL * PicoIn.sndRate / (target_fps*target_lines);
// samples per z80 clock (Q20)
Pico.snd.clkl_mult = 16 * Pico.snd.smpl_mult * 15/7 / 488.5;
// samples per 44.1 KHz sample
Pico.snd.cdda_mult = 65536LL * 44100 / PicoIn.sndRate;
Pico.snd.cdda_div = 65536LL * PicoIn.sndRate / 44100;
// clear all buffers
memset32(PsndBuffer, 0, sizeof(PsndBuffer)/4);
memset(cdda_out_buffer, 0, sizeof(cdda_out_buffer));
if (PicoIn.sndOut)
PsndClear();
// set mixer
PsndMix_32_to_16 = (PicoIn.opt & POPT_EN_STEREO) ? mix_32_to_16_stereo : mix_32_to_16_mono;
mix_reset(PicoIn.opt & POPT_EN_SNDFILTER ? PicoIn.sndFilterAlpha : 0);
if (PicoIn.AHW & PAHW_PICO)
PicoReratePico();
}
PICO_INTERNAL void PsndStartFrame(void)
{
// compensate for float part of Pico.snd.len
Pico.snd.len_use = Pico.snd.len;
Pico.snd.len_e_cnt += Pico.snd.len_e_add;
if (Pico.snd.len_e_cnt >= 0x10000) {
Pico.snd.len_e_cnt -= 0x10000;
Pico.snd.len_use++;
}
}
PICO_INTERNAL void PsndDoDAC(int cyc_to)
{
int pos, len;
int dout = ym2612.dacout;
// nothing to do if sound is off
if (!PicoIn.sndOut) return;
// number of samples to fill in buffer (Q20)
len = (cyc_to * Pico.snd.clkl_mult) - Pico.snd.dac_pos;
// update position and calculate buffer offset and length
pos = (Pico.snd.dac_pos+0x80000) >> 20;
Pico.snd.dac_pos += len;
len = ((Pico.snd.dac_pos+0x80000) >> 20) - pos;
// avoid loss of the 1st sample of a new block (Q rounding issues)
if (pos+len == 0)
len = 1, Pico.snd.dac_pos += 0x80000;
if (len <= 0)
return;
// fill buffer, applying a rather weak order 1 bessel IIR on the way
// y[n] = (x[n] + x[n-1])*(1/2) (3dB cutoff at 11025 Hz, no gain)
// 1 sample delay for correct IIR filtering over audio frame boundaries
if (PicoIn.opt & POPT_EN_STEREO) {
s16 *d = PicoIn.sndOut + pos*2;
// left channel only, mixed ro right channel in mixing phase
*d++ += Pico.snd.dac_val2, *d++ += Pico.snd.dac_val2;
while (--len) *d++ += Pico.snd.dac_val, *d++ += Pico.snd.dac_val;
} else {
s16 *d = PicoIn.sndOut + pos;
*d++ += Pico.snd.dac_val2;
while (--len) *d++ += Pico.snd.dac_val;
}
Pico.snd.dac_val2 = (Pico.snd.dac_val + dout) >> 1;
Pico.snd.dac_val = dout;
}
PICO_INTERNAL void PsndDoPSG(int cyc_to)
{
int pos, len;
int stereo = 0;
// nothing to do if sound is off
if (!PicoIn.sndOut) return;
// number of samples to fill in buffer (Q20)
len = (cyc_to * Pico.snd.clkl_mult) - Pico.snd.psg_pos;
// update position and calculate buffer offset and length
pos = (Pico.snd.psg_pos+0x80000) >> 20;
Pico.snd.psg_pos += len;
len = ((Pico.snd.psg_pos+0x80000) >> 20) - pos;
if (len <= 0)
return;
if (!(PicoIn.opt & POPT_EN_PSG))
return;
if (PicoIn.opt & POPT_EN_STEREO) {
stereo = 1;
pos <<= 1;
}
SN76496Update(PicoIn.sndOut + pos, len, stereo);
}
PICO_INTERNAL void PsndDoSMSFM(int cyc_to)
{
int pos, len;
int stereo = 0;
s32 *buf32 = PsndBuffer;
s16 *buf = PicoIn.sndOut;
// nothing to do if sound is off
if (!PicoIn.sndOut) return;
// number of samples to fill in buffer (Q20)
len = (cyc_to * Pico.snd.clkl_mult) - Pico.snd.ym2413_pos;
// update position and calculate buffer offset and length
pos = (Pico.snd.ym2413_pos+0x80000) >> 20;
Pico.snd.ym2413_pos += len;
len = ((Pico.snd.ym2413_pos+0x80000) >> 20) - pos;
if (len <= 0)
return;
if (!(PicoIn.opt & POPT_EN_YM2413))
return;
if (PicoIn.opt & POPT_EN_STEREO) {
stereo = 1;
pos <<= 1;
}
if (Pico.m.hardware & PMS_HW_FMUSED) {
buf += pos;
PsndFMUpdate(buf32, len, 0, 0);
if (stereo)
while (len--) {
*buf++ += *buf32;
*buf++ += *buf32++;
}
else
while (len--) {
*buf++ += *buf32++;
}
}
}
PICO_INTERNAL void PsndDoFM(int cyc_to)
{
int pos, len;
int stereo = 0;
// nothing to do if sound is off
if (!PicoIn.sndOut) return;
// Q20, number of samples since last call
len = (cyc_to * Pico.snd.clkl_mult) - Pico.snd.fm_pos;
// update position and calculate buffer offset and length
pos = (Pico.snd.fm_pos+0x80000) >> 20;
Pico.snd.fm_pos += len;
len = ((Pico.snd.fm_pos+0x80000) >> 20) - pos;
if (len <= 0)
return;
// fill buffer
if (PicoIn.opt & POPT_EN_STEREO) {
stereo = 1;
pos <<= 1;
}
if (PicoIn.opt & POPT_EN_FM)
PsndFMUpdate(PsndBuffer + pos, len, stereo, 1);
}
PICO_INTERNAL void PsndDoPCM(int cyc_to)
{
int pos, len;
int stereo = 0;
// nothing to do if sound is off
if (!PicoIn.sndOut) return;
// Q20, number of samples since last call
len = (cyc_to * Pico.snd.clkl_mult) - Pico.snd.pcm_pos;
// update position and calculate buffer offset and length
pos = (Pico.snd.pcm_pos+0x80000) >> 20;
Pico.snd.pcm_pos += len;
len = ((Pico.snd.pcm_pos+0x80000) >> 20) - pos;
if (len <= 0)
return;
// fill buffer
if (PicoIn.opt & POPT_EN_STEREO) {
stereo = 1;
pos <<= 1;
}
PicoPicoPCMUpdate(PicoIn.sndOut + pos, len, stereo);
}
// cdda
static void cdda_raw_update(s32 *buffer, int length, int stereo)
{
int ret, cdda_bytes;
cdda_bytes = (length * Pico.snd.cdda_mult >> 16) * 4;
ret = pm_read_audio(cdda_out_buffer, cdda_bytes, Pico_mcd->cdda_stream);
if (ret < cdda_bytes) {
memset((char *)cdda_out_buffer + ret, 0, cdda_bytes - ret);
Pico_mcd->cdda_stream = NULL;
return;
}
// now mix
if (stereo) switch (Pico.snd.cdda_mult) {
case 0x10000: mix_16h_to_32(buffer, cdda_out_buffer, length*2); break;
case 0x20000: mix_16h_to_32_s1(buffer, cdda_out_buffer, length*2); break;
case 0x40000: mix_16h_to_32_s2(buffer, cdda_out_buffer, length*2); break;
default: mix_16h_to_32_resample_stereo(buffer, cdda_out_buffer, length, Pico.snd.cdda_mult);
} else
mix_16h_to_32_resample_mono(buffer, cdda_out_buffer, length, Pico.snd.cdda_mult);
}
void cdda_start_play(int lba_base, int lba_offset, int lb_len)
{
if (Pico_mcd->cdda_type == CT_MP3)
{
int pos1024 = 0;
if (lba_offset)
pos1024 = lba_offset * 1024 / lb_len;
mp3_start_play(Pico_mcd->cdda_stream, pos1024);
return;
}
pm_seek(Pico_mcd->cdda_stream, (lba_base + lba_offset) * 2352, SEEK_SET);
if (Pico_mcd->cdda_type == CT_WAV)
{
// skip headers, assume it's 44kHz stereo uncompressed
pm_seek(Pico_mcd->cdda_stream, 44, SEEK_CUR);
}
}
PICO_INTERNAL void PsndClear(void)
{
int len = Pico.snd.len;
if (Pico.snd.len_e_add) len++;
// drop pos remainder to avoid rounding errors (not entirely correct though)
Pico.snd.dac_pos = Pico.snd.fm_pos = Pico.snd.psg_pos = Pico.snd.ym2413_pos = Pico.snd.pcm_pos = 0;
if (!PicoIn.sndOut) return;
if (PicoIn.opt & POPT_EN_STEREO)
memset32((int *) PicoIn.sndOut, 0, len); // assume PicoIn.sndOut to be aligned
else {
s16 *out = PicoIn.sndOut;
if ((uintptr_t)out & 2) { *out++ = 0; len--; }
memset32((int *) out, 0, len/2);
if (len & 1) out[len-1] = 0;
}
if (!(PicoIn.opt & POPT_EN_FM))
memset32(PsndBuffer, 0, PicoIn.opt & POPT_EN_STEREO ? len*2 : len);
}
static int PsndRender(int offset, int length)
{
s32 *buf32;
int stereo = (PicoIn.opt & 8) >> 3;
int fmlen = ((Pico.snd.fm_pos+0x80000) >> 20);
int daclen = ((Pico.snd.dac_pos+0x80000) >> 20);
int psglen = ((Pico.snd.psg_pos+0x80000) >> 20);
int pcmlen = ((Pico.snd.pcm_pos+0x80000) >> 20);
buf32 = PsndBuffer+(offset<<stereo);
pprof_start(sound);
// Add in parts of the PSG output not yet done
if (length-psglen > 0 && PicoIn.sndOut) {
s16 *psgbuf = PicoIn.sndOut + (psglen << stereo);
Pico.snd.psg_pos += (length-psglen) << 20;
if (PicoIn.opt & POPT_EN_PSG)
SN76496Update(psgbuf, length-psglen, stereo);
}
if (PicoIn.AHW & PAHW_PICO) {
// always need to render sound for interrupts
s16 *buf16 = PicoIn.sndOut ? PicoIn.sndOut + (pcmlen<<stereo) : NULL;
PicoPicoPCMUpdate(buf16, length-pcmlen, stereo);
return length;
}
// Fill up DAC output in case of missing samples (Q rounding errors)
if (length-daclen > 0 && PicoIn.sndOut) {
s16 *dacbuf = PicoIn.sndOut + (daclen << stereo);
Pico.snd.dac_pos += (length-daclen) << 20;
*dacbuf++ += Pico.snd.dac_val2;
if (stereo) *dacbuf++ += Pico.snd.dac_val2;
for (daclen++; length-daclen > 0; daclen++) {
*dacbuf++ += Pico.snd.dac_val;
if (stereo) *dacbuf++ += Pico.snd.dac_val;
}
Pico.snd.dac_val2 = Pico.snd.dac_val;
}
// Add in parts of the FM buffer not yet done
if (length-fmlen > 0 && PicoIn.sndOut) {
s32 *fmbuf = buf32 + ((fmlen-offset) << stereo);
Pico.snd.fm_pos += (length-fmlen) << 20;
if (PicoIn.opt & POPT_EN_FM)
PsndFMUpdate(fmbuf, length-fmlen, stereo, 1);
}
// CD: PCM sound
if (PicoIn.AHW & PAHW_MCD) {
pcd_pcm_update(buf32, length-offset, stereo);
}
// CD: CDDA audio
// CD mode, cdda enabled, not data track, CDC is reading
if ((PicoIn.AHW & PAHW_MCD) && (PicoIn.opt & POPT_EN_MCD_CDDA)
&& Pico_mcd->cdda_stream != NULL
&& !(Pico_mcd->s68k_regs[0x36] & 1))
{
if (Pico_mcd->cdda_type == CT_MP3)
mp3_update(buf32, length-offset, stereo);
else
cdda_raw_update(buf32, length-offset, stereo);
}
if ((PicoIn.AHW & PAHW_32X) && (PicoIn.opt & POPT_EN_PWM))
p32x_pwm_update(buf32, length-offset, stereo);
// convert + limit to normal 16bit output
if (PicoIn.sndOut)
PsndMix_32_to_16(PicoIn.sndOut+(offset<<stereo), buf32, length-offset);
pprof_end(sound);
return length;
}
PICO_INTERNAL void PsndGetSamples(int y)
{
static int curr_pos = 0;
curr_pos = PsndRender(0, Pico.snd.len_use);
if (PicoIn.writeSound && PicoIn.sndOut)
PicoIn.writeSound(curr_pos * ((PicoIn.opt & POPT_EN_STEREO) ? 4 : 2));
// clear sound buffer
PsndClear();
}
static int PsndRenderMS(int offset, int length)
{
s32 *buf32 = PsndBuffer;
int stereo = (PicoIn.opt & 8) >> 3;
int psglen = ((Pico.snd.psg_pos+0x80000) >> 20);
int ym2413len = ((Pico.snd.ym2413_pos+0x80000) >> 20);
if (!PicoIn.sndOut)
return length;
pprof_start(sound);
// Add in parts of the PSG output not yet done
if (length-psglen > 0) {
s16 *psgbuf = PicoIn.sndOut + (psglen << stereo);
Pico.snd.psg_pos += (length-psglen) << 20;
if (PicoIn.opt & POPT_EN_PSG)
SN76496Update(psgbuf, length-psglen, stereo);
}
if (length-ym2413len > 0) {
s16 *ym2413buf = PicoIn.sndOut + (ym2413len << stereo);
Pico.snd.ym2413_pos += (length-ym2413len) << 20;
int len = (length-ym2413len);
if (Pico.m.hardware & PMS_HW_FMUSED) {
PsndFMUpdate(buf32, len, 0, 0);
if (stereo)
while (len--) {
*ym2413buf++ += *buf32;
*ym2413buf++ += *buf32++;
}
else
while (len--) {
*ym2413buf++ += *buf32++;
}
}
}
pprof_end(sound);
return length;
}
PICO_INTERNAL void PsndGetSamplesMS(int y)
{
static int curr_pos = 0;
curr_pos = PsndRenderMS(0, Pico.snd.len_use);
if (PicoIn.writeSound != NULL && PicoIn.sndOut)
PicoIn.writeSound(curr_pos * ((PicoIn.opt & POPT_EN_STEREO) ? 4 : 2));
PsndClear();
}
// vim:shiftwidth=2:ts=2:expandtab