picodrive/cpu/sh2/compiler.c

5608 lines
168 KiB
C

/*
* SH2 recompiler
* (C) notaz, 2009,2010,2013
*
* This work is licensed under the terms of MAME license.
* See COPYING file in the top-level directory.
*
* notes:
* - tcache, block descriptor, link buffer overflows result in sh2_translate()
* failure, followed by full tcache invalidation for that region
* - jumps between blocks are tracked for SMC handling (in block_entry->links),
* except jumps between different tcaches
*
* implemented:
* - static register allocation
* - remaining register caching and tracking in temporaries
* - block-local branch linking
* - block linking (except between tcaches)
* - some constant propagation
*
* TODO:
* - better constant propagation
* - stack caching?
* - bug fixing
*/
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "../../pico/pico_int.h"
#include "../../pico/arm_features.h"
#include "sh2.h"
#include "compiler.h"
#include "../drc/cmn.h"
#include "../debug.h"
// features
#define PROPAGATE_CONSTANTS 1
#define LINK_BRANCHES 1
#define BRANCH_CACHE 1
#define ALIAS_REGISTERS 1
#define REMAP_REGISTER 1
// limits (per block)
#define MAX_BLOCK_SIZE (BLOCK_INSN_LIMIT * 6 * 6)
// max literal offset from the block end
#define MAX_LITERAL_OFFSET 0x200 // max. MOVA, MOV @(PC) offset
#define MAX_LITERALS (BLOCK_INSN_LIMIT / 4)
#define MAX_LOCAL_BRANCHES (BLOCK_INSN_LIMIT / 4)
// debug stuff
// 01 - warnings/errors
// 02 - block info/smc
// 04 - asm
// 08 - runtime block entry log
// 10 - smc self-check
// 20 - runtime block entry counter
// 100 - write trace
// 200 - compare trace
// 400 - block entry backtrace on exit
// 800 - state dump on exit
// {
#ifndef DRC_DEBUG
#define DRC_DEBUG 0
#endif
#if DRC_DEBUG
#define dbg(l,...) { \
if ((l) & DRC_DEBUG) \
elprintf(EL_STATUS, ##__VA_ARGS__); \
}
#include "mame/sh2dasm.h"
#include <platform/libpicofe/linux/host_dasm.h>
static int insns_compiled, hash_collisions, host_insn_count;
#define COUNT_OP \
host_insn_count++
#else // !DRC_DEBUG
#define COUNT_OP
#define dbg(...)
#endif
///
#define FETCH_OP(pc) \
dr_pc_base[(pc) / 2]
#define FETCH32(a) \
((dr_pc_base[(a) / 2] << 16) | dr_pc_base[(a) / 2 + 1])
#define CHECK_UNHANDLED_BITS(mask, label) { \
if ((op & (mask)) != 0) \
goto label; \
}
#define GET_Fx() \
((op >> 4) & 0x0f)
#define GET_Rm GET_Fx
#define GET_Rn() \
((op >> 8) & 0x0f)
#define BITMASK1(v0) (1 << (v0))
#define BITMASK2(v0,v1) ((1 << (v0)) | (1 << (v1)))
#define BITMASK3(v0,v1,v2) (BITMASK2(v0,v1) | (1 << (v2)))
#define BITMASK4(v0,v1,v2,v3) (BITMASK3(v0,v1,v2) | (1 << (v3)))
#define BITMASK5(v0,v1,v2,v3,v4) (BITMASK4(v0,v1,v2,v3) | (1 << (v4)))
#define BITMASK6(v0,v1,v2,v3,v4,v5) (BITMASK5(v0,v1,v2,v3,v4) | (1 << (v5)))
#define BITRANGE(v0,v1) (BITMASK1(v1+1)-BITMASK1(v0)) // set with v0..v1
#define SHR_T SHR_SR // might make them separate someday
#define SHR_MEM 31
#define SHR_TMP -1
static struct op_data {
u8 op;
u8 cycles;
u8 size; // 0, 1, 2 - byte, word, long
s8 rm; // branch or load/store data reg
u32 source; // bitmask of src regs
u32 dest; // bitmask of dest regs
u32 imm; // immediate/io address/branch target
// (for literal - address, not value)
} ops[BLOCK_INSN_LIMIT];
enum op_types {
OP_UNHANDLED = 0,
OP_BRANCH,
OP_BRANCH_N, // conditional known not to be taken
OP_BRANCH_CT, // conditional, branch if T set
OP_BRANCH_CF, // conditional, branch if T clear
OP_BRANCH_R, // indirect
OP_BRANCH_RF, // indirect far (PC + Rm)
OP_SETCLRT, // T flag set/clear
OP_MOVE, // register move
OP_LOAD_POOL, // literal pool load, imm is address
OP_MOVA,
OP_SLEEP,
OP_RTE,
OP_TRAPA,
OP_UNDEFINED,
};
#define OP_ISBRANCH(op) (BITRANGE(OP_BRANCH, OP_BRANCH_RF) & BITMASK1(op))
#define OP_ISBRAUC(op) (BITMASK4(OP_BRANCH, OP_BRANCH_R, OP_BRANCH_RF, OP_RTE) \
& BITMASK1(op))
#define OP_ISBRACND(op) (BITMASK2(OP_BRANCH_CT, OP_BRANCH_CF) & BITMASK1(op))
#ifdef DRC_SH2
#if (DRC_DEBUG & 4)
static u8 *tcache_dsm_ptrs[3];
static char sh2dasm_buff[64];
#define do_host_disasm(tcid) \
host_dasm(tcache_dsm_ptrs[tcid], tcache_ptr - tcache_dsm_ptrs[tcid]); \
tcache_dsm_ptrs[tcid] = tcache_ptr
#else
#define do_host_disasm(x)
#endif
#define SH2_DUMP(sh2, reason) { \
char ms = (sh2)->is_slave ? 's' : 'm'; \
printf("%csh2 %s %08x\n", ms, reason, (sh2)->pc); \
printf("%csh2 r0-7 %08x %08x %08x %08x %08x %08x %08x %08x\n", ms, \
(sh2)->r[0], (sh2)->r[1], (sh2)->r[2], (sh2)->r[3], \
(sh2)->r[4], (sh2)->r[5], (sh2)->r[6], (sh2)->r[7]); \
printf("%csh2 r8-15 %08x %08x %08x %08x %08x %08x %08x %08x\n", ms, \
(sh2)->r[8], (sh2)->r[9], (sh2)->r[10], (sh2)->r[11], \
(sh2)->r[12], (sh2)->r[13], (sh2)->r[14], (sh2)->r[15]); \
printf("%csh2 pc-ml %08x %08x %08x %08x %08x %08x %08x %08x\n", ms, \
(sh2)->pc, (sh2)->ppc, (sh2)->pr, (sh2)->sr&0x3ff, \
(sh2)->gbr, (sh2)->vbr, (sh2)->mach, (sh2)->macl); \
printf("%csh2 tmp-p %08x %08x %08x %08x %08x %08x %08x %08x\n", ms, \
(sh2)->drc_tmp, (sh2)->irq_cycles, \
(sh2)->pdb_io_csum[0], (sh2)->pdb_io_csum[1], (sh2)->state, \
(sh2)->poll_addr, (sh2)->poll_cycles, (sh2)->poll_cnt); \
}
#if (DRC_DEBUG & (8|256|512|1024)) || defined(PDB)
static SH2 csh2[2][8];
static void REGPARM(3) *sh2_drc_log_entry(void *block, SH2 *sh2, u32 sr)
{
if (block != NULL) {
dbg(8, "= %csh2 enter %08x %p, c=%d", sh2->is_slave ? 's' : 'm',
sh2->pc, block, (signed int)sr >> 12);
#if defined PDB
pdb_step(sh2, sh2->pc);
#elif (DRC_DEBUG & 256)
{
static FILE *trace[2];
int idx = sh2->is_slave;
if (!trace[0]) {
truncate("pico.trace", 0);
trace[0] = fopen("pico.trace0", "wb");
trace[1] = fopen("pico.trace1", "wb");
}
if (csh2[idx][0].pc != sh2->pc) {
fwrite(sh2, offsetof(SH2, read8_map), 1, trace[idx]);
fwrite(&sh2->pdb_io_csum, sizeof(sh2->pdb_io_csum), 1, trace[idx]);
memcpy(&csh2[idx][0], sh2, offsetof(SH2, poll_cnt)+4);
csh2[idx][0].is_slave = idx;
}
}
#elif (DRC_DEBUG & 512)
{
static FILE *trace[2];
static SH2 fsh2;
int idx = sh2->is_slave;
if (!trace[0]) {
trace[0] = fopen("pico.trace0", "rb");
trace[1] = fopen("pico.trace1", "rb");
}
if (csh2[idx][0].pc != sh2->pc) {
if (!fread(&fsh2, offsetof(SH2, read8_map), 1, trace[idx]) ||
!fread(&fsh2.pdb_io_csum, sizeof(sh2->pdb_io_csum), 1, trace[idx])) {
printf("trace eof at %08lx\n",ftell(trace[idx]));
exit(1);
}
fsh2.sr = (fsh2.sr & 0xfff) | (sh2->sr & ~0xfff);
fsh2.is_slave = idx;
if (memcmp(&fsh2, sh2, offsetof(SH2, read8_map)) ||
0)//memcmp(&fsh2.pdb_io_csum, &sh2->pdb_io_csum, sizeof(sh2->pdb_io_csum)))
{
printf("difference at %08lx!\n",ftell(trace[idx]));
SH2_DUMP(&fsh2, "file");
SH2_DUMP(sh2, "current");
SH2_DUMP(&csh2[idx][0], "previous");
exit(1);
}
csh2[idx][0] = fsh2;
}
}
#elif (DRC_DEBUG & 1024)
{
int x = sh2->is_slave, i;
for (i = 0; i < ARRAY_SIZE(csh2[x])-1; i++)
memcpy(&csh2[x][i], &csh2[x][i+1], offsetof(SH2, poll_cnt)+4);
memcpy(&csh2[x][ARRAY_SIZE(csh2[x])-1], sh2, offsetof(SH2, poll_cnt)+4);
csh2[x][0].is_slave = x;
}
#endif
}
return block;
}
#endif
// } debug
#define TCACHE_BUFFERS 3
// we have 3 translation cache buffers, split from one drc/cmn buffer.
// BIOS shares tcache with data array because it's only used for init
// and can be discarded early
// XXX: need to tune sizes
static const int tcache_sizes[TCACHE_BUFFERS] = {
DRC_TCACHE_SIZE * 14 / 16, // ROM (rarely used), DRAM
DRC_TCACHE_SIZE / 16, // BIOS, data array in master sh2
DRC_TCACHE_SIZE / 16, // ... slave
};
static u8 *tcache_bases[TCACHE_BUFFERS];
static u8 *tcache_ptrs[TCACHE_BUFFERS];
static u8 *tcache_limit[TCACHE_BUFFERS];
// ptr for code emiters
static u8 *tcache_ptr;
#define MAX_BLOCK_ENTRIES (BLOCK_INSN_LIMIT / 8)
struct block_link {
u32 target_pc;
void *jump; // insn address
struct block_link *next; // either in block_entry->links or unresolved
struct block_link *o_next; // ...in block_entry->o_links
struct block_link *prev;
struct block_link *o_prev;
struct block_entry *target;// target block this is linked in (be->links)
int tcache_id;
};
struct block_entry {
u32 pc;
u8 *tcache_ptr; // translated block for above PC
struct block_entry *next; // chain in hash_table with same pc hash
struct block_entry *prev;
struct block_link *links; // incoming links to this entry
struct block_link *o_links;// outgoing links from this entry
#if (DRC_DEBUG & 2)
struct block_desc *block;
#endif
#if (DRC_DEBUG & 32)
int entry_count;
#endif
};
struct block_desc {
u32 addr; // block start SH2 PC address
u32 addr_lit; // block start SH2 literal pool addr
int size; // ..of recompiled insns
int size_lit; // ..of (insns+)literal pool
u8 *tcache_ptr; // start address of block in cache
u16 crc; // crc of insns and literals
u16 active; // actively used or deactivated?
struct block_list *list;
#if (DRC_DEBUG & 2)
int refcount;
#endif
int entry_count;
struct block_entry entryp[MAX_BLOCK_ENTRIES];
};
static const int block_max_counts[TCACHE_BUFFERS] = {
4*1024,
256,
256,
};
static struct block_desc *block_tables[TCACHE_BUFFERS];
static int block_counts[TCACHE_BUFFERS];
static int block_limit[TCACHE_BUFFERS];
// we have block_link_pool to avoid using mallocs
static const int block_link_pool_max_counts[TCACHE_BUFFERS] = {
16*1024,
4*256,
4*256,
};
static struct block_link *block_link_pool[TCACHE_BUFFERS];
static int block_link_pool_counts[TCACHE_BUFFERS];
static struct block_link **unresolved_links[TCACHE_BUFFERS];
static struct block_link *blink_free[TCACHE_BUFFERS];
// used for invalidation
static const int ram_sizes[TCACHE_BUFFERS] = {
0x40000,
0x1000,
0x1000,
};
#define INVAL_PAGE_SIZE 0x100
struct block_list {
struct block_desc *block;
struct block_list *next;
struct block_list *prev;
struct block_list **head;
struct block_list *l_next;
};
struct block_list *blist_free;
static struct block_list *inactive_blocks[TCACHE_BUFFERS];
// array of pointers to block_lists for RAM and 2 data arrays
// each array has len: sizeof(mem) / INVAL_PAGE_SIZE
static struct block_list **inval_lookup[TCACHE_BUFFERS];
static const int hash_table_sizes[TCACHE_BUFFERS] = {
0x4000,
0x100,
0x100,
};
static struct block_entry **hash_tables[TCACHE_BUFFERS];
#define HASH_FUNC(hash_tab, addr, mask) \
(hash_tab)[(((addr) >> 20) ^ ((addr) >> 2)) & (mask)]
// host register tracking
enum {
HR_FREE,
HR_STATIC, // vreg has a static mapping
HR_CACHED, // vreg has sh2_reg_e
HR_TEMP, // reg used for temp storage
} cache_reg_type;
enum {
HRF_DIRTY = 1 << 0, // has "dirty" value to be written to ctx
HRF_LOCKED = 1 << 1, // can't be evicted
HRF_TEMP = 1 << 2, // is for temps and args
HRF_REG = 1 << 3, // is for sh2 regs
} cache_reg_flags;
typedef struct {
u8 hreg; // "host" reg
u8 flags:4; // TEMP or REG?
u8 type:4;
u16 stamp; // kind of a timestamp
u32 gregs; // "guest" reg mask
} cache_reg_t;
// guest register tracking
enum {
GRF_DIRTY = 1 << 0, // reg has "dirty" value to be written to ctx
GRF_CONST = 1 << 1, // reg has a constant
GRF_CDIRTY = 1 << 2, // constant not yet written to ctx
GRF_STATIC = 1 << 3, // reg has static mapping to vreg
} guest_reg_flags;
typedef struct {
u8 flags; // guest flags: is constant, is dirty?
s8 sreg; // cache reg for static mapping
s8 vreg; // cache_reg this is currently mapped to, -1 if not mapped
s8 cnst; // const index if this is constant
} guest_reg_t;
// note: cache_regs[] must have at least the amount of
// HRF_REG registers used by handlers in worst case (currently 4)
#ifdef __arm__
#include "../drc/emit_arm.c"
// register assigment goes by ABI convention. All caller save registers are TEMP
// the others are either static or REG. SR must be static, R0 very recommended
static guest_reg_t guest_regs[] = {
// SHR_R0 .. SHR_SP
#ifndef __MACH__ // no r9..
{ GRF_STATIC, 8 }, { GRF_STATIC, 9 }, { 0 } , { 0 } ,
#else
{ GRF_STATIC, 8 }, { 0 } , { 0 } , { 0 } ,
#endif
{ 0 } , { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
// SHR_PC, SHR_PPC, SHR_PR, SHR_SR,
// SHR_GBR, SHR_VBR, SHR_MACH, SHR_MACL,
{ 0 } , { 0 } , { 0 } , { GRF_STATIC, 10 },
{ 0 } , { 0 } , { 0 } , { 0 } ,
};
// NB first TEMP, then REG. alloc/evict algorithm depends on this
static cache_reg_t cache_regs[] = {
{ 12, HRF_TEMP },
{ 14, HRF_TEMP },
{ 0, HRF_TEMP },
{ 1, HRF_TEMP },
{ 2, HRF_TEMP },
{ 3, HRF_TEMP },
{ 8, HRF_LOCKED },
#ifndef __MACH__ // no r9..
{ 9, HRF_LOCKED },
#endif
{ 10, HRF_LOCKED },
{ 4, HRF_REG },
{ 5, HRF_REG },
{ 6, HRF_REG },
{ 7, HRF_REG },
};
#elif defined(__i386__)
#include "../drc/emit_x86.c"
static guest_reg_t guest_regs[] = {
// SHR_R0 .. SHR_SP
{GRF_STATIC, xSI}, { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
// SHR_PC, SHR_PPC, SHR_PR, SHR_SR,
// SHR_GBR, SHR_VBR, SHR_MACH, SHR_MACL,
{ 0 } , { 0 } , { 0 } , {GRF_STATIC, xDI},
{ 0 } , { 0 } , { 0 } , { 0 } ,
};
// ax, cx, dx are usually temporaries by convention
static cache_reg_t cache_regs[] = {
{ xBX, HRF_REG|HRF_TEMP },
{ xCX, HRF_REG|HRF_TEMP },
{ xDX, HRF_REG|HRF_TEMP },
{ xAX, HRF_REG|HRF_TEMP },
{ xSI, HRF_LOCKED },
{ xDI, HRF_LOCKED },
};
#elif defined(__x86_64__)
#include "../drc/emit_x86.c"
static guest_reg_t guest_regs[] = {
// SHR_R0 .. SHR_SP
#ifndef _WIN32
{ 0 } , { 0 } , { 0 } , { 0 } ,
#else
{GRF_STATIC, xDI}, { 0 } , { 0 } , { 0 } ,
#endif
{ 0 } , { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
// SHR_PC, SHR_PPC, SHR_PR, SHR_SR,
// SHR_GBR, SHR_VBR, SHR_MACH, SHR_MACL,
{ 0 } , { 0 } , { 0 } , {GRF_STATIC, xBX},
{ 0 } , { 0 } , { 0 } , { 0 } ,
};
// ax, cx, dx are usually temporaries by convention
static cache_reg_t cache_regs[] = {
{ xCX, HRF_REG|HRF_TEMP },
{ xDX, HRF_REG|HRF_TEMP },
{ xAX, HRF_REG|HRF_TEMP },
{ xSI, HRF_REG|HRF_TEMP },
#ifndef _WIN32
{ xDI, HRF_REG|HRF_TEMP },
#else
{ xDI, HRF_LOCKED },
#endif
{ xBX, HRF_LOCKED },
};
#else
#error unsupported arch
#endif
static signed char reg_map_host[HOST_REGS];
#define T 0x00000001
#define S 0x00000002
#define I 0x000000f0
#define Q 0x00000100
#define M 0x00000200
#define T_save 0x00000800
#define I_SHIFT 4
#define Q_SHIFT 8
#define M_SHIFT 9
static void REGPARM(1) (*sh2_drc_entry)(SH2 *sh2);
static void (*sh2_drc_dispatcher)(void);
static void (*sh2_drc_exit)(void);
static void (*sh2_drc_test_irq)(void);
static u32 REGPARM(1) (*sh2_drc_read8)(u32 a);
static u32 REGPARM(1) (*sh2_drc_read16)(u32 a);
static u32 REGPARM(1) (*sh2_drc_read32)(u32 a);
static void REGPARM(2) (*sh2_drc_write8)(u32 a, u32 d);
static void REGPARM(2) (*sh2_drc_write16)(u32 a, u32 d);
static void REGPARM(2) (*sh2_drc_write32)(u32 a, u32 d);
// flags for memory access
#define MF_SIZEMASK 0x03 // size of access
#define MF_POSTINCR 0x10 // post increment (for read_rr)
#define MF_PREDECR MF_POSTINCR // pre decrement (for write_rr)
// address space stuff
static int dr_is_rom(u32 a)
{
// tweak for WWF Raw which writes data to some high ROM addresses
return (a & 0xc6000000) == 0x02000000 && (a & 0x3f0000) < 0x3e0000;
}
static int dr_ctx_get_mem_ptr(u32 a, u32 *mask)
{
int poffs = -1;
if ((a & ~0x7ff) == 0) {
// BIOS
poffs = offsetof(SH2, p_bios);
*mask = 0x7ff;
}
else if ((a & 0xfffff000) == 0xc0000000) {
// data array
// FIXME: access sh2->data_array instead
poffs = offsetof(SH2, p_da);
*mask = 0xfff;
}
else if ((a & 0xc6000000) == 0x06000000) {
// SDRAM
poffs = offsetof(SH2, p_sdram);
*mask = 0x03ffff;
}
else if ((a & 0xc6000000) == 0x02000000) {
// ROM
poffs = offsetof(SH2, p_rom);
*mask = 0x3fffff;
}
return poffs;
}
static struct block_entry *dr_get_entry(u32 pc, int is_slave, int *tcache_id)
{
struct block_entry *be;
u32 tcid = 0, mask;
// data arrays have their own caches
if ((pc & 0xe0000000) == 0xc0000000 || (pc & ~0xfff) == 0)
tcid = 1 + is_slave;
*tcache_id = tcid;
mask = hash_table_sizes[tcid] - 1;
be = HASH_FUNC(hash_tables[tcid], pc, mask);
for (; be != NULL; be = be->next)
if (be->pc == pc)
return be;
return NULL;
}
// ---------------------------------------------------------------
// block management
static void add_to_block_list(struct block_list **blist, struct block_desc *block)
{
struct block_list *added;
if (blist_free) {
added = blist_free;
blist_free = added->next;
} else {
added = malloc(sizeof(*added));
}
if (!added) {
elprintf(EL_ANOMALY, "drc OOM (1)");
return;
}
added->block = block;
added->l_next = block->list;
block->list = added;
added->head = blist;
added->prev = NULL;
if (*blist)
(*blist)->prev = added;
added->next = *blist;
*blist = added;
}
static void rm_from_block_lists(struct block_desc *block)
{
struct block_list *entry;
entry = block->list;
while (entry != NULL) {
if (entry->prev != NULL)
entry->prev->next = entry->next;
else
*(entry->head) = entry->next;
if (entry->next != NULL)
entry->next->prev = entry->prev;
entry->next = blist_free;
blist_free = entry;
entry = entry->l_next;
}
block->list = NULL;
}
static void rm_block_list(struct block_list **blist)
{
struct block_list *next, *current = *blist;
while (current != NULL) {
next = current->next;
current->next = blist_free;
blist_free = current;
current = next;
}
*blist = NULL;
}
static void REGPARM(1) flush_tcache(int tcid)
{
int i;
#if (DRC_DEBUG & 1)
int tc_used, bl_used;
tc_used = tcache_sizes[tcid] - (tcache_limit[tcid] - tcache_ptrs[tcid]);
bl_used = block_max_counts[tcid] - (block_limit[tcid] - block_counts[tcid]);
elprintf(EL_STATUS, "tcache #%d flush! (%d/%d, bds %d/%d)", tcid, tc_used,
tcache_sizes[tcid], bl_used, block_max_counts[tcid]);
#endif
block_counts[tcid] = 0;
block_limit[tcid] = block_max_counts[tcid] - 1;
block_link_pool_counts[tcid] = 0;
blink_free[tcid] = NULL;
memset(unresolved_links[tcid], 0, sizeof(*unresolved_links[0]) * hash_table_sizes[tcid]);
memset(hash_tables[tcid], 0, sizeof(*hash_tables[0]) * hash_table_sizes[tcid]);
tcache_ptrs[tcid] = tcache_bases[tcid];
tcache_limit[tcid] = tcache_bases[tcid] + tcache_sizes[tcid];
if (Pico32xMem->sdram != NULL) {
if (tcid == 0) { // ROM, RAM
memset(Pico32xMem->drcblk_ram, 0, sizeof(Pico32xMem->drcblk_ram));
memset(Pico32xMem->drclit_ram, 0, sizeof(Pico32xMem->drclit_ram));
memset(sh2s[0].branch_cache, -1, sizeof(sh2s[0].branch_cache));
memset(sh2s[1].branch_cache, -1, sizeof(sh2s[1].branch_cache));
} else {
memset(Pico32xMem->drcblk_ram, 0, sizeof(Pico32xMem->drcblk_ram));
memset(Pico32xMem->drclit_ram, 0, sizeof(Pico32xMem->drclit_ram));
memset(Pico32xMem->drcblk_da[tcid - 1], 0, sizeof(Pico32xMem->drcblk_da[tcid - 1]));
memset(Pico32xMem->drclit_da[tcid - 1], 0, sizeof(Pico32xMem->drclit_da[tcid - 1]));
memset(sh2s[tcid - 1].branch_cache, -1, sizeof(sh2s[0].branch_cache));
}
}
#if (DRC_DEBUG & 4)
tcache_dsm_ptrs[tcid] = tcache_bases[tcid];
#endif
for (i = 0; i < ram_sizes[tcid] / INVAL_PAGE_SIZE; i++)
rm_block_list(&inval_lookup[tcid][i]);
rm_block_list(&inactive_blocks[tcid]);
}
static void add_to_hashlist(struct block_entry *be, int tcache_id)
{
u32 tcmask = hash_table_sizes[tcache_id] - 1;
struct block_entry **head = &HASH_FUNC(hash_tables[tcache_id], be->pc, tcmask);
be->prev = NULL;
if (*head)
(*head)->prev = be;
be->next = *head;
*head = be;
#if (DRC_DEBUG & 2)
if (be->next != NULL) {
printf(" %08x: entry hash collision with %08x\n",
be->pc, be->next->pc);
hash_collisions++;
}
#endif
}
static void rm_from_hashlist(struct block_entry *be, int tcache_id)
{
u32 tcmask = hash_table_sizes[tcache_id] - 1;
struct block_entry **head = &HASH_FUNC(hash_tables[tcache_id], be->pc, tcmask);
#if DRC_DEBUG & 1
struct block_entry *current = be;
while (current->prev != NULL)
current = current->prev;
if (current != *head)
dbg(1, "rm_from_hashlist @%p: be %p %08x missing?", head, be, be->pc);
#endif
if (be->prev != NULL)
be->prev->next = be->next;
else
*head = be->next;
if (be->next != NULL)
be->next->prev = be->prev;
}
static void add_to_hashlist_unresolved(struct block_link *bl, int tcache_id)
{
u32 tcmask = hash_table_sizes[tcache_id] - 1;
struct block_link **head = &HASH_FUNC(unresolved_links[tcache_id], bl->target_pc, tcmask);
#if DRC_DEBUG & 1
struct block_link *current = *head;
while (current != NULL && current != bl)
current = current->next;
if (current == bl)
dbg(1, "add_to_hashlist_unresolved @%p: bl %p %p %08x already in?", head, bl, bl->target, bl->target_pc);
#endif
bl->target = NULL; // marker for not resolved
bl->prev = NULL;
if (*head)
(*head)->prev = bl;
bl->next = *head;
*head = bl;
}
static void rm_from_hashlist_unresolved(struct block_link *bl, int tcache_id)
{
u32 tcmask = hash_table_sizes[tcache_id] - 1;
struct block_link **head = &HASH_FUNC(unresolved_links[tcache_id], bl->target_pc, tcmask);
#if DRC_DEBUG & 1
struct block_link *current = bl;
while (current->prev != NULL)
current = current->prev;
if (current != *head)
dbg(1, "rm_from_hashlist_unresolved @%p: bl %p %p %08x missing?", head, bl, bl->target, bl->target_pc);
#endif
if (bl->prev != NULL)
bl->prev->next = bl->next;
else
*head = bl->next;
if (bl->next != NULL)
bl->next->prev = bl->prev;
}
static void sh2_smc_rm_block_entry(struct block_desc *bd, int tcache_id, u32 nolit, int free);
static void dr_free_oldest_block(int tcache_id)
{
struct block_desc *bd;
if (block_limit[tcache_id] >= block_max_counts[tcache_id]) {
// block desc wrap around
block_limit[tcache_id] = 0;
}
bd = &block_tables[tcache_id][block_limit[tcache_id]];
if (bd->tcache_ptr && bd->tcache_ptr < tcache_ptrs[tcache_id]) {
// cache wrap around
tcache_ptrs[tcache_id] = bd->tcache_ptr;
}
if (bd->addr && bd->entry_count)
sh2_smc_rm_block_entry(bd, tcache_id, 0, 1);
block_limit[tcache_id]++;
if (block_limit[tcache_id] >= block_max_counts[tcache_id])
block_limit[tcache_id] = 0;
bd = &block_tables[tcache_id][block_limit[tcache_id]];
if (bd->tcache_ptr >= tcache_ptrs[tcache_id])
tcache_limit[tcache_id] = bd->tcache_ptr;
else
tcache_limit[tcache_id] = tcache_bases[tcache_id] + tcache_sizes[tcache_id];
}
static u8 *dr_prepare_cache(int tcache_id, int insn_count)
{
#if BRANCH_CACHE
u8 *limit = tcache_limit[tcache_id];
#endif
// if no block desc available
if (block_counts[tcache_id] == block_limit[tcache_id])
dr_free_oldest_block(tcache_id);
// while not enough cache space left (limit - tcache_ptr < max space needed)
while (tcache_limit[tcache_id] - tcache_ptrs[tcache_id] < insn_count * 128)
dr_free_oldest_block(tcache_id);
#if BRANCH_CACHE
if (limit != tcache_limit[tcache_id]) {
if (tcache_id)
memset32(sh2s[tcache_id-1].branch_cache, -1, sizeof(sh2s[0].branch_cache)/4);
else {
memset32(sh2s[0].branch_cache, -1, sizeof(sh2s[0].branch_cache)/4);
memset32(sh2s[1].branch_cache, -1, sizeof(sh2s[1].branch_cache)/4);
}
}
#endif
return (u8 *)tcache_ptrs[tcache_id];
}
static void dr_mark_memory(int mark, struct block_desc *block, int tcache_id, u32 nolit)
{
u8 *drc_ram_blk = NULL, *lit_ram_blk = NULL;
u32 addr, end, mask = 0, shift = 0, idx;
// mark memory blocks as containing compiled code
if ((block->addr & 0xc7fc0000) == 0x06000000
|| (block->addr & 0xfffff000) == 0xc0000000)
{
if (tcache_id != 0) {
// data array
drc_ram_blk = Pico32xMem->drcblk_da[tcache_id-1];
lit_ram_blk = Pico32xMem->drclit_da[tcache_id-1];
shift = SH2_DRCBLK_DA_SHIFT;
}
else {
// SDRAM
drc_ram_blk = Pico32xMem->drcblk_ram;
lit_ram_blk = Pico32xMem->drclit_ram;
shift = SH2_DRCBLK_RAM_SHIFT;
}
mask = ram_sizes[tcache_id] - 1;
// mark recompiled insns
addr = block->addr & ~((1 << shift) - 1);
end = block->addr + block->size;
for (idx = (addr & mask) >> shift; addr < end; addr += (1 << shift))
drc_ram_blk[idx++] += mark;
// mark literal pool
if (addr < (block->addr_lit & ~((1 << shift) - 1)))
addr = block->addr_lit & ~((1 << shift) - 1);
end = block->addr_lit + block->size_lit;
for (idx = (addr & mask) >> shift; addr < end; addr += (1 << shift))
drc_ram_blk[idx++] += mark;
// mark for literals disabled
if (nolit) {
addr = nolit & ~((1 << shift) - 1);
end = block->addr_lit + block->size_lit;
for (idx = (addr & mask) >> shift; addr < end; addr += (1 << shift))
lit_ram_blk[idx++] = 1;
}
if (mark < 0)
rm_from_block_lists(block);
else {
// add to invalidation lookup lists
addr = block->addr & ~(INVAL_PAGE_SIZE - 1);
end = block->addr + block->size;
for (idx = (addr & mask) / INVAL_PAGE_SIZE; addr < end; addr += INVAL_PAGE_SIZE)
add_to_block_list(&inval_lookup[tcache_id][idx++], block);
if (addr < (block->addr_lit & ~(INVAL_PAGE_SIZE - 1)))
addr = block->addr_lit & ~(INVAL_PAGE_SIZE - 1);
end = block->addr_lit + block->size_lit;
for (idx = (addr & mask) / INVAL_PAGE_SIZE; addr < end; addr += INVAL_PAGE_SIZE)
add_to_block_list(&inval_lookup[tcache_id][idx++], block);
}
}
}
static u32 dr_check_nolit(u32 start, u32 end, int tcache_id)
{
u8 *lit_ram_blk = NULL;
u32 mask = 0, shift = 0, addr, idx;
if ((start & 0xc7fc0000) == 0x06000000
|| (start & 0xfffff000) == 0xc0000000)
{
if (tcache_id != 0) {
// data array
lit_ram_blk = Pico32xMem->drclit_da[tcache_id-1];
shift = SH2_DRCBLK_DA_SHIFT;
}
else {
// SDRAM
lit_ram_blk = Pico32xMem->drclit_ram;
shift = SH2_DRCBLK_RAM_SHIFT;
}
mask = ram_sizes[tcache_id] - 1;
addr = start & ~((1 << shift) - 1);
for (idx = (addr & mask) >> shift; addr < end; addr += (1 << shift))
if (lit_ram_blk[idx++])
break;
return (addr < start ? start : addr > end ? end : addr);
}
return end;
}
static struct block_desc *dr_find_inactive_block(int tcache_id, u16 crc,
u32 addr, int size, u32 addr_lit, int size_lit)
{
struct block_list **head = &inactive_blocks[tcache_id];
struct block_list *prev = NULL, *current = *head;
for (; current != NULL; prev = current, current = current->next) {
struct block_desc *block = current->block;
if (block->crc == crc && block->addr == addr && block->size == size &&
block->addr_lit == addr_lit && block->size_lit == size_lit)
{
if (prev == NULL)
*head = current->next;
else
prev->next = current->next;
block->list = NULL; // should now be empty
current->next = blist_free;
blist_free = current;
return block;
}
}
return NULL;
}
static struct block_desc *dr_add_block(u32 addr, int size,
u32 addr_lit, int size_lit, u16 crc, int is_slave, int *blk_id)
{
struct block_entry *be;
struct block_desc *bd;
int tcache_id;
int *bcount;
// do a lookup to get tcache_id and override check
be = dr_get_entry(addr, is_slave, &tcache_id);
if (be != NULL)
dbg(1, "block override for %08x", addr);
bcount = &block_counts[tcache_id];
if (*bcount == block_limit[tcache_id]) {
dbg(1, "bd overflow for tcache %d", tcache_id);
return NULL;
}
bd = &block_tables[tcache_id][*bcount];
bd->addr = addr;
bd->size = size;
bd->addr_lit = addr_lit;
bd->size_lit = size_lit;
bd->tcache_ptr = tcache_ptr;
bd->crc = crc;
bd->active = 1;
bd->entry_count = 1;
bd->entryp[0].pc = addr;
bd->entryp[0].tcache_ptr = tcache_ptr;
bd->entryp[0].links = bd->entryp[0].o_links = NULL;
#if (DRC_DEBUG & 2)
bd->entryp[0].block = bd;
bd->refcount = 0;
#endif
add_to_hashlist(&bd->entryp[0], tcache_id);
*blk_id = *bcount;
(*bcount)++;
if (*bcount >= block_max_counts[tcache_id])
*bcount = 0;
return bd;
}
static void REGPARM(3) *dr_lookup_block(u32 pc, int is_slave, int *tcache_id)
{
struct block_entry *be = NULL;
void *block = NULL;
be = dr_get_entry(pc, is_slave, tcache_id);
if (be != NULL)
block = be->tcache_ptr;
#if (DRC_DEBUG & 2)
if (be != NULL)
be->block->refcount++;
#endif
return block;
}
static void *dr_failure(void)
{
lprintf("recompilation failed\n");
exit(1);
}
static void *dr_prepare_ext_branch(struct block_entry *owner, u32 pc, int is_slave, int tcache_id)
{
#if LINK_BRANCHES
struct block_link *bl = block_link_pool[tcache_id];
int cnt = block_link_pool_counts[tcache_id];
struct block_entry *be = NULL;
int target_tcache_id;
// get the target block entry
be = dr_get_entry(pc, is_slave, &target_tcache_id);
if (target_tcache_id && target_tcache_id != tcache_id)
return sh2_drc_dispatcher;
// get a block link
if (blink_free[tcache_id] != NULL) {
bl = blink_free[tcache_id];
blink_free[tcache_id] = bl->next;
} else if (cnt >= block_link_pool_max_counts[tcache_id]) {
dbg(1, "bl overflow for tcache %d", tcache_id);
return sh2_drc_dispatcher;
} else {
bl += cnt;
block_link_pool_counts[tcache_id] = cnt+1;
}
// prepare link and add to ougoing list of owner
bl->tcache_id = tcache_id;
bl->target_pc = pc;
bl->jump = tcache_ptr;
bl->o_next = owner->o_links;
owner->o_links = bl;
if (be != NULL) {
dbg(2, "- early link from %p to pc %08x entry %p", bl->jump, pc, be->tcache_ptr);
bl->target = be;
bl->prev = NULL;
if (be->links)
be->links->prev = bl;
bl->next = be->links;
be->links = bl;
return be->tcache_ptr;
}
else {
add_to_hashlist_unresolved(bl, tcache_id);
return sh2_drc_dispatcher;
}
#else
return sh2_drc_dispatcher;
#endif
}
static void dr_link_blocks(struct block_entry *be, int tcache_id)
{
#if LINK_BRANCHES
u32 tcmask = hash_table_sizes[tcache_id] - 1;
u32 pc = be->pc;
struct block_link **head = &HASH_FUNC(unresolved_links[tcache_id], pc, tcmask);
struct block_link *bl = *head, *next;
while (bl != NULL) {
next = bl->next;
if (bl->target_pc == pc) {
dbg(2, "- link from %p to pc %08x entry %p", bl->jump, pc, be->tcache_ptr);
// move bl from unresolved_links to block_entry
rm_from_hashlist_unresolved(bl, tcache_id);
emith_jump_patch(bl->jump, be->tcache_ptr);
bl->target = be;
bl->prev = NULL;
if (be->links)
be->links->prev = bl;
bl->next = be->links;
be->links = bl;
}
bl = next;
}
// could sync arm caches here, but that's unnecessary
#endif
}
static void dr_link_outgoing(struct block_entry *be, int tcache_id, int is_slave)
{
#if LINK_BRANCHES
struct block_link *bl;
int target_tcache_id;
for (bl = be->o_links; bl; bl = bl->o_next) {
be = dr_get_entry(bl->target_pc, is_slave, &target_tcache_id);
if (!target_tcache_id || target_tcache_id == tcache_id) {
if (be) {
dbg(2, "- link from %p to pc %08x entry %p", bl->jump, bl->target_pc, be->tcache_ptr);
emith_jump_patch(bl->jump, be->tcache_ptr);
bl->target = be;
bl->prev = NULL;
if (be->links)
be->links->prev = bl;
bl->next = be->links;
be->links = bl;
} else {
emith_jump_patch(bl->jump, sh2_drc_dispatcher);
add_to_hashlist_unresolved(bl, tcache_id);
}
host_instructions_updated(bl->jump, bl->jump+4);
}
}
#endif
}
#define ADD_TO_ARRAY(array, count, item, failcode) { \
if (count >= ARRAY_SIZE(array)) { \
dbg(1, "warning: " #array " overflow"); \
failcode; \
} else \
array[count++] = item; \
}
static int find_in_array(u32 *array, size_t size, u32 what)
{
size_t i;
for (i = 0; i < size; i++)
if (what == array[i])
return i;
return -1;
}
// ---------------------------------------------------------------
// NB rcache allocation dependencies:
// - get_reg_arg/get_tmp_arg first (might evict other regs just allocated)
// - get_reg(..., NULL) before get_reg(..., &hr) if it might get the same reg
// - get_reg(..., RC_GR_READ/RMW, ...) before WRITE (might evict needed reg)
// register cache / constant propagation stuff
typedef enum {
RC_GR_READ,
RC_GR_WRITE,
RC_GR_RMW,
} rc_gr_mode;
typedef struct {
u32 gregs;
u32 val;
} gconst_t;
gconst_t gconsts[ARRAY_SIZE(guest_regs)];
static int rcache_get_reg_(sh2_reg_e r, rc_gr_mode mode, int do_locking, int *hr);
static void rcache_add_vreg_alias(int x, sh2_reg_e r);
static void rcache_remove_vreg_alias(int x, sh2_reg_e r);
#define RCACHE_DUMP(msg) { \
cache_reg_t *cp; \
guest_reg_t *gp; \
int i; \
printf("cache dump %s:\n",msg); \
printf("cache_regs:\n"); \
for (i = 0; i < ARRAY_SIZE(cache_regs); i++) { \
cp = &cache_regs[i]; \
if (cp->type != HR_FREE || cp->gregs) \
printf("%d: hr=%d t=%d f=%x m=%x\n", i, cp->hreg, cp->type, cp->flags, cp->gregs); \
} \
printf("guest_regs:\n"); \
for (i = 0; i < ARRAY_SIZE(guest_regs); i++) { \
gp = &guest_regs[i]; \
if (gp->vreg != -1 || gp->sreg >= 0) \
printf("%d: v=%d f=%x s=%d\n", i, gp->vreg, gp->flags, gp->sreg); \
} \
}
// binary search approach, since we don't have CLZ on ARM920T
#define FOR_ALL_BITS_SET_DO(mask, bit, code) { \
u32 __mask = mask; \
for (bit = 31; bit >= 0 && mask; bit--, __mask <<= 1) { \
if (!(__mask & (0xffff << 16))) \
bit -= 16, __mask <<= 16; \
if (!(__mask & (0xff << 24))) \
bit -= 8, __mask <<= 8; \
if (!(__mask & (0xf << 28))) \
bit -= 4, __mask <<= 4; \
if (!(__mask & (0x3 << 30))) \
bit -= 2, __mask <<= 2; \
if (!(__mask & (0x1 << 31))) \
bit -= 1, __mask <<= 1; \
if (__mask & (0x1 << 31)) { \
code; \
} \
} \
}
#if PROPAGATE_CONSTANTS
static inline int gconst_alloc(sh2_reg_e r)
{
int i, n = -1;
for (i = 0; i < ARRAY_SIZE(gconsts); i++) {
if (gconsts[i].gregs & (1 << r))
gconsts[i].gregs &= ~(1 << r);
if (gconsts[i].gregs == 0 && n < 0)
n = i;
}
if (n >= 0)
gconsts[n].gregs = (1 << r);
else
exit(1); // cannot happen - more constants than guest regs?
return n;
}
static void gconst_set(sh2_reg_e r, u32 val)
{
int i = gconst_alloc(r);
guest_regs[r].flags |= GRF_CONST;
guest_regs[r].cnst = i;
gconsts[i].val = val;
}
static void gconst_new(sh2_reg_e r, u32 val)
{
gconst_set(r, val);
guest_regs[r].flags |= GRF_CDIRTY;
// throw away old r that we might have cached
if (guest_regs[r].vreg >= 0)
rcache_remove_vreg_alias(guest_regs[r].vreg, r);
}
static void gconst_copy(sh2_reg_e rd, sh2_reg_e rs)
{
if (guest_regs[rd].flags & GRF_CONST) {
guest_regs[rd].flags &= ~(GRF_CONST|GRF_CDIRTY);
gconsts[guest_regs[rd].cnst].gregs &= ~(1 << rd);
}
if (guest_regs[rs].flags & GRF_CONST) {
guest_regs[rd].flags |= GRF_CONST;
guest_regs[rd].cnst = guest_regs[rs].cnst;
gconsts[guest_regs[rd].cnst].gregs |= (1 << rd);
}
}
#endif
static int gconst_get(sh2_reg_e r, u32 *val)
{
if (guest_regs[r].flags & GRF_CONST) {
*val = gconsts[guest_regs[r].cnst].val;
return 1;
}
return 0;
}
static int gconst_check(sh2_reg_e r)
{
if (guest_regs[r].flags & (GRF_CONST|GRF_CDIRTY))
return 1;
return 0;
}
// update hr if dirty, else do nothing
static int gconst_try_read(int vreg, sh2_reg_e r)
{
int i, x;
if (guest_regs[r].flags & GRF_CDIRTY) {
x = guest_regs[r].cnst;
emith_move_r_imm(cache_regs[vreg].hreg, gconsts[x].val);
FOR_ALL_BITS_SET_DO(gconsts[x].gregs, i,
{
if (guest_regs[i].vreg >= 0 && i != r)
rcache_remove_vreg_alias(guest_regs[i].vreg, i);
rcache_add_vreg_alias(vreg, i);
guest_regs[i].flags &= ~GRF_CDIRTY;
guest_regs[i].flags |= GRF_DIRTY;
});
return 1;
}
return 0;
}
static u32 gconst_dirty_mask(void)
{
u32 mask = 0;
int i;
for (i = 0; i < ARRAY_SIZE(guest_regs); i++)
if (guest_regs[i].flags & GRF_CDIRTY)
mask |= (1 << i);
return mask;
}
static void gconst_kill(sh2_reg_e r)
{
if (guest_regs[r].flags &= ~(GRF_CONST|GRF_CDIRTY))
gconsts[guest_regs[r].cnst].gregs &= ~(1 << r);
guest_regs[r].flags &= ~(GRF_CONST|GRF_CDIRTY);
}
static void gconst_clean(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(guest_regs); i++)
if (guest_regs[i].flags & GRF_CDIRTY) {
// using RC_GR_READ here: it will call gconst_try_read,
// cache the reg and mark it dirty.
rcache_get_reg_(i, RC_GR_READ, 0, NULL);
}
}
static void gconst_invalidate(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(guest_regs); i++) {
if (guest_regs[i].flags & (GRF_CONST|GRF_CDIRTY))
gconsts[guest_regs[i].cnst].gregs &= ~(1 << i);
guest_regs[i].flags &= ~(GRF_CONST|GRF_CDIRTY);
}
}
static u16 rcache_counter;
static u32 rcache_static;
static u32 rcache_locked;
static u32 rcache_hint_soon;
static u32 rcache_hint_late;
static u32 rcache_hint_write;
#define rcache_hint (rcache_hint_soon|rcache_hint_late)
static void rcache_unmap_vreg(int x)
{
int i;
FOR_ALL_BITS_SET_DO(cache_regs[x].gregs, i,
guest_regs[i].vreg = -1);
if (cache_regs[x].type != HR_STATIC)
cache_regs[x].type = HR_FREE;
cache_regs[x].gregs = 0;
cache_regs[x].flags &= (HRF_REG|HRF_TEMP);
}
static void rcache_clean_vreg(int x)
{
int r;
if (cache_regs[x].flags & HRF_DIRTY) { // writeback
cache_regs[x].flags &= ~HRF_DIRTY;
FOR_ALL_BITS_SET_DO(cache_regs[x].gregs, r,
if (guest_regs[r].flags & GRF_DIRTY) {
if (guest_regs[r].flags & GRF_STATIC) {
if (guest_regs[r].vreg != guest_regs[r].sreg) {
if (!(cache_regs[guest_regs[r].sreg].flags & HRF_LOCKED)) {
// statically mapped reg not in its sreg. move back to sreg
rcache_clean_vreg(guest_regs[r].sreg);
rcache_unmap_vreg(guest_regs[r].sreg);
emith_move_r_r(cache_regs[guest_regs[r].sreg].hreg, cache_regs[guest_regs[r].vreg].hreg);
rcache_remove_vreg_alias(x, r);
rcache_add_vreg_alias(guest_regs[r].sreg, r);
} else {
// must evict since sreg is locked
emith_ctx_write(cache_regs[x].hreg, r * 4);
guest_regs[r].vreg = -1;
}
}
} else
emith_ctx_write(cache_regs[x].hreg, r * 4);
}
guest_regs[r].flags &= ~GRF_DIRTY;)
}
}
static void rcache_add_vreg_alias(int x, sh2_reg_e r)
{
cache_regs[x].gregs |= (1 << r);
guest_regs[r].vreg = x;
}
static void rcache_remove_vreg_alias(int x, sh2_reg_e r)
{
cache_regs[x].gregs &= ~(1 << r);
if (!cache_regs[x].gregs) {
// no reg mapped -> free vreg
if (cache_regs[x].type != HR_STATIC)
cache_regs[x].type = HR_FREE;
cache_regs[x].flags &= (HRF_REG|HRF_TEMP);
}
guest_regs[r].vreg = -1;
}
static void rcache_evict_vreg(int x)
{
rcache_clean_vreg(x);
rcache_unmap_vreg(x);
}
static void rcache_evict_vreg_aliases(int x, sh2_reg_e r)
{
cache_regs[x].gregs &= ~(1 << r);
rcache_evict_vreg(x);
cache_regs[x].gregs = (1 << r);
if (cache_regs[x].type != HR_STATIC)
cache_regs[x].type = HR_CACHED;
if (guest_regs[r].flags & GRF_DIRTY)
cache_regs[x].flags |= HRF_DIRTY;
}
static cache_reg_t *rcache_evict(void)
{
// evict reg with oldest stamp (only for HRF_REG, no temps)
int i, i_prio, oldest = -1, prio = 0;
u16 min_stamp = (u16)-1;
for (i = 0; i < ARRAY_SIZE(cache_regs); i++) {
// consider only unlocked REG
if (!(cache_regs[i].flags & HRF_REG) || (cache_regs[i].flags & HRF_LOCKED))
continue;
if (cache_regs[i].type == HR_FREE || (cache_regs[i].type == HR_TEMP)) {
oldest = i;
break;
}
if (cache_regs[i].type == HR_CACHED) {
if (rcache_locked & cache_regs[i].gregs)
// REGs needed for the current insn
i_prio = 1;
else if (rcache_hint_soon & cache_regs[i].gregs)
// REGs needed in some future insn
i_prio = 2;
else if (rcache_hint_late & cache_regs[i].gregs)
// REGs needed in some future insn
i_prio = 3;
else if ((rcache_hint_write & cache_regs[i].gregs) != cache_regs[i].gregs)
// REGs not needed soon
i_prio = 4;
else
// REGs soon overwritten anyway
i_prio = 5;
if (prio < i_prio || (prio == i_prio && cache_regs[i].stamp < min_stamp)) {
min_stamp = cache_regs[i].stamp;
oldest = i;
prio = i_prio;
}
}
}
if (oldest == -1) {
printf("no registers to evict, aborting\n");
exit(1);
}
if (cache_regs[oldest].type == HR_CACHED)
rcache_evict_vreg(oldest);
cache_regs[oldest].type = HR_FREE;
cache_regs[oldest].flags &= (HRF_TEMP|HRF_REG);
cache_regs[oldest].gregs = 0;
return &cache_regs[oldest];
}
#if REMAP_REGISTER
// maps a host register to a REG
static int rcache_map_reg(sh2_reg_e r, int hr, int mode)
{
int i;
gconst_kill(r);
// lookup the TEMP hr maps to
i = reg_map_host[hr];
if (i < 0) {
// must not happen
printf("invalid host register %d\n", hr);
exit(1);
}
// deal with statically mapped regs
if (mode == RC_GR_RMW && (guest_regs[r].flags & GRF_STATIC)) {
if (guest_regs[r].vreg == guest_regs[r].sreg) {
// STATIC in its sreg with no aliases, and some processing pending
if (cache_regs[guest_regs[r].vreg].gregs == 1 << r)
return cache_regs[guest_regs[r].vreg].hreg;
} else if (!cache_regs[guest_regs[r].sreg].gregs)
// STATIC not in its sreg, with sreg available -> move it
i = guest_regs[r].sreg;
}
// remove old mappings of r and i if one exists
if (guest_regs[r].vreg >= 0)
rcache_remove_vreg_alias(guest_regs[r].vreg, r);
if (cache_regs[i].type == HR_CACHED)
rcache_unmap_vreg(i);
// set new mappping
if (cache_regs[i].type != HR_STATIC)
cache_regs[i].type = HR_CACHED;
cache_regs[i].gregs = 1 << r;
cache_regs[i].flags &= (HRF_TEMP|HRF_REG);
cache_regs[i].stamp = ++rcache_counter;
cache_regs[i].flags |= HRF_DIRTY|HRF_LOCKED;
guest_regs[r].flags |= GRF_DIRTY;
guest_regs[r].vreg = i;
return cache_regs[i].hreg;
}
// remap vreg from a TEMP to a REG if it is hinted (upcoming TEMP invalidation)
static void rcache_remap_vreg(int r)
{
int i, j, free = -1, cached = -1, hinted = -1;
u16 min_stamp_cached = (u16)-1, min_stamp_hinted = -1;
// r must be a vreg
if (cache_regs[r].type != HR_CACHED)
return;
// if r is already a REG or isn't used, clean here to avoid data loss on inval
if ((cache_regs[r].flags & HRF_REG) || !(rcache_hint & cache_regs[r].gregs)) {
rcache_clean_vreg(r);
return;
}
// find REG, either free or unused temp or oldest cached
for (i = 0; i < ARRAY_SIZE(cache_regs) && free < 0; i++) {
if ((cache_regs[i].flags & HRF_TEMP) || (cache_regs[i].flags & HRF_LOCKED))
continue;
if (cache_regs[i].type == HR_FREE || cache_regs[i].type == HR_TEMP)
free = i;
if (cache_regs[i].type == HR_CACHED && !(rcache_hint & cache_regs[i].gregs)) {
if (cache_regs[i].stamp < min_stamp_cached) {
min_stamp_cached = cache_regs[i].stamp;
cached = i;
}
}
if (cache_regs[i].type == HR_CACHED && !(rcache_hint_soon & cache_regs[i].gregs)
&& (rcache_hint_soon & cache_regs[r].gregs))
if (cache_regs[i].stamp < min_stamp_hinted) {
min_stamp_hinted = cache_regs[i].stamp;
hinted = i;
}
}
if (free >= 0) {
i = free;
} else if (cached >= 0 && cached != r) {
i = cached;
rcache_evict_vreg(i);
} else if (hinted >= 0 && hinted != r) {
i = hinted;
rcache_evict_vreg(i);
} else {
rcache_clean_vreg(r);
return;
}
// set new mapping and remove old one
cache_regs[i].type = HR_CACHED;
cache_regs[i].gregs = cache_regs[r].gregs;
cache_regs[i].flags &= (HRF_TEMP|HRF_REG);
cache_regs[i].flags |= cache_regs[r].flags & ~(HRF_TEMP|HRF_REG);
cache_regs[i].stamp = cache_regs[r].stamp;
emith_move_r_r(cache_regs[i].hreg, cache_regs[r].hreg);
for (j = 0; j < ARRAY_SIZE(guest_regs); j++)
if (guest_regs[j].vreg == r)
guest_regs[j].vreg = i;
cache_regs[r].type = HR_FREE;
cache_regs[r].flags &= (HRF_TEMP|HRF_REG);
cache_regs[r].gregs = 0;
}
#endif
// note: must not be called when doing conditional code
static int rcache_get_reg_(sh2_reg_e r, rc_gr_mode mode, int do_locking, int *hr)
{
cache_reg_t *tr = NULL;
int i, h, split = -1;
rcache_counter++;
// maybe already cached?
// if so, prefer against gconst (they must be in sync)
i = guest_regs[r].vreg;
if ((guest_regs[r].flags & GRF_STATIC) && i != guest_regs[r].sreg &&
!(cache_regs[guest_regs[r].sreg].flags & HRF_LOCKED) &&
(i < 0 || mode != RC_GR_READ) &&
!((rcache_hint_soon|rcache_locked) & cache_regs[guest_regs[r].sreg].gregs)) {
// good opportunity to relocate a remapped STATIC
h = guest_regs[r].sreg;
rcache_evict_vreg(h);
tr = &cache_regs[h];
tr->gregs = 1 << r;
if (i >= 0) {
if (mode != RC_GR_WRITE) {
if (hr)
*hr = cache_regs[i].hreg;
else
emith_move_r_r(cache_regs[h].hreg, cache_regs[i].hreg);
hr = NULL;
}
rcache_remove_vreg_alias(guest_regs[r].vreg, r);
} else if (mode != RC_GR_WRITE) {
if (gconst_try_read(h, r)) {
tr->flags |= HRF_DIRTY;
guest_regs[r].flags |= GRF_DIRTY;
} else
emith_ctx_read(tr->hreg, r * 4);
}
guest_regs[r].vreg = guest_regs[r].sreg;
goto end;
} else if (i >= 0) {
if (mode == RC_GR_READ || !(cache_regs[i].gregs & ~(1 << r))) {
// either only reading, or no multiple mapping
tr = &cache_regs[i];
goto end;
}
// split if aliases needed rsn, or already locked, or r is STATIC in sreg
if (((rcache_hint|rcache_locked) & cache_regs[i].gregs & ~(1 << r)) ||
(cache_regs[i].flags & HRF_LOCKED) ||
(cache_regs[i].type == HR_STATIC && !(guest_regs[r].flags & GRF_STATIC))) {
// need to split up. take reg out here to avoid unnecessary writebacks
cache_regs[i].gregs &= ~(1 << r);
split = i;
} else {
// aliases not needed anytime soon, remove them
// XXX split aliases away if writing and static and not locked and hinted?
rcache_evict_vreg_aliases(i, r);
tr = &cache_regs[i];
goto end;
}
}
// get a free reg, but use temps only if r is not needed soon
for (i = ARRAY_SIZE(cache_regs) - 1; i >= 0; i--) {
if ((cache_regs[i].type == HR_FREE ||
(cache_regs[i].type == HR_TEMP && !(cache_regs[i].flags & HRF_LOCKED))) &&
(!(rcache_hint & (1 << r)) || (cache_regs[i].flags & HRF_REG))) {
tr = &cache_regs[i];
break;
}
}
if (!tr)
tr = rcache_evict();
tr->type = HR_CACHED;
tr->gregs = 1 << r;
guest_regs[r].vreg = tr - cache_regs;
if (mode != RC_GR_WRITE) {
if (gconst_try_read(guest_regs[r].vreg, r)) {
tr->flags |= HRF_DIRTY;
guest_regs[r].flags |= GRF_DIRTY;
} else if (split >= 0) {
if (hr) {
cache_regs[split].flags |= HRF_LOCKED;
*hr = cache_regs[split].hreg;
hr = NULL;
} else if (tr->hreg != cache_regs[split].hreg)
emith_move_r_r(tr->hreg, cache_regs[split].hreg);
} else
emith_ctx_read(tr->hreg, r * 4);
}
end:
if (hr)
*hr = tr->hreg;
if (do_locking)
tr->flags |= HRF_LOCKED;
tr->stamp = rcache_counter;
if (mode != RC_GR_READ) {
tr->flags |= HRF_DIRTY;
guest_regs[r].flags |= GRF_DIRTY;
gconst_kill(r);
}
return tr->hreg;
}
static int rcache_get_reg(sh2_reg_e r, rc_gr_mode mode, int *hr)
{
return rcache_get_reg_(r, mode, 1, hr);
}
static int rcache_get_tmp(void)
{
cache_reg_t *tr = NULL;
int i;
// use any free reg, but prefer TEMP regs
for (i = 0; i < ARRAY_SIZE(cache_regs); i++) {
if (cache_regs[i].type == HR_FREE ||
(cache_regs[i].type == HR_TEMP && !(cache_regs[i].flags & HRF_LOCKED))) {
tr = &cache_regs[i];
break;
}
}
if (!tr)
tr = rcache_evict();
tr->type = HR_TEMP;
tr->flags |= HRF_LOCKED;
return tr->hreg;
}
static int rcache_get_hr_id(int hr)
{
int i;
i = reg_map_host[hr];
if (i < 0) // can't happen
exit(1);
#if REMAP_REGISTER
if (cache_regs[i].type == HR_CACHED)
rcache_remap_vreg(i);
#endif
if (cache_regs[i].type == HR_CACHED)
rcache_evict_vreg(i);
else if (cache_regs[i].type == HR_TEMP && (cache_regs[i].flags & HRF_LOCKED)) {
printf("host reg %d already used, aborting\n", hr);
exit(1);
}
return i;
}
static int rcache_get_arg_id(int arg)
{
int hr = 0;
host_arg2reg(hr, arg);
return rcache_get_hr_id(hr);
}
// get a reg to be used as function arg
static int rcache_get_tmp_arg(int arg)
{
int id = rcache_get_arg_id(arg);
cache_regs[id].type = HR_TEMP;
cache_regs[id].flags |= HRF_LOCKED;
return cache_regs[id].hreg;
}
// ... as return value after a call
static int rcache_get_tmp_ret(void)
{
int id = rcache_get_hr_id(RET_REG);
cache_regs[id].type = HR_TEMP;
cache_regs[id].flags |= HRF_LOCKED;
return cache_regs[id].hreg;
}
// same but caches a reg if access is readonly (announced by hr being NULL)
static int rcache_get_reg_arg(int arg, sh2_reg_e r, int *hr)
{
int i, srcr, dstr, dstid;
int dirty = 0, src_dirty = 0, is_const = 0, is_cached = 0;
u32 val;
host_arg2reg(dstr, arg);
i = guest_regs[r].vreg;
if (i >= 0 && cache_regs[i].type == HR_CACHED && cache_regs[i].hreg == dstr)
// r is already in arg
dstid = i;
else
dstid = rcache_get_arg_id(arg);
dstr = cache_regs[dstid].hreg;
if (rcache_hint & (1 << r)) {
// r is needed later on anyway
srcr = rcache_get_reg_(r, RC_GR_READ, 0, NULL);
is_cached = (cache_regs[reg_map_host[srcr]].type == HR_CACHED);
} else if ((guest_regs[r].flags & GRF_CDIRTY) && gconst_get(r, &val)) {
// r has an uncomitted const - load into arg, but keep constant uncomitted
srcr = dstr;
is_const = 1;
} else if ((i = guest_regs[r].vreg) >= 0) {
// maybe already cached?
srcr = cache_regs[i].hreg;
is_cached = (cache_regs[reg_map_host[srcr]].type == HR_CACHED);
} else {
// must read either const or from ctx
srcr = dstr;
if (rcache_static & (1 << r))
srcr = rcache_get_reg_(r, RC_GR_READ, 0, NULL);
else if (gconst_try_read(guest_regs[r].vreg, r))
dirty = 1;
else
emith_ctx_read(srcr, r * 4);
}
if (is_cached) {
i = reg_map_host[srcr];
if (srcr == dstr) { // evict aliases here since it is reallocated below
if (guest_regs[r].flags & GRF_STATIC) // move STATIC back to its sreg
rcache_clean_vreg(guest_regs[r].vreg);
#if REMAP_REGISTER
rcache_remap_vreg(i);
#endif
if (cache_regs[i].type == HR_CACHED)
rcache_evict_vreg(i);
}
else if (hr != NULL) // must lock srcr if not copied here
cache_regs[i].flags |= HRF_LOCKED;
if (guest_regs[r].flags & GRF_DIRTY)
src_dirty = 1;
}
cache_regs[dstid].type = HR_TEMP;
if (is_const) {
// uncomitted constant
emith_move_r_imm(srcr, val);
} else if (dstr != srcr) {
// arg is a copy of cached r
if (hr == NULL)
emith_move_r_r(dstr, srcr);
} else if (hr != NULL) {
// caller will modify arg, so it will soon be out of sync with r
if (dirty || src_dirty) {
emith_ctx_write(dstr, r * 4); // must clean since arg will be modified
guest_regs[r].flags &= ~GRF_DIRTY;
}
} else if (guest_regs[r].vreg < 0) {
// keep arg as vreg for r
cache_regs[dstid].type = HR_CACHED;
cache_regs[dstid].gregs = 1 << r;
guest_regs[r].vreg = dstid;
if (dirty || src_dirty) { // mark as modifed for cleaning later on
cache_regs[dstid].flags |= HRF_DIRTY;
guest_regs[r].flags |= GRF_DIRTY;
}
}
if (hr)
*hr = srcr;
cache_regs[dstid].stamp = ++rcache_counter;
cache_regs[dstid].flags |= HRF_LOCKED;
return dstr;
}
static void rcache_free_tmp(int hr)
{
int i = reg_map_host[hr];
if (i < 0 || cache_regs[i].type != HR_TEMP) {
printf("rcache_free_tmp fail: #%i hr %d, type %d\n", i, hr, cache_regs[i].type);
return;
}
cache_regs[i].type = HR_FREE;
cache_regs[i].flags &= (HRF_REG|HRF_TEMP);
}
// saves temporary result either in REG or in drctmp
static int rcache_save_tmp(int hr)
{
int i, free = -1, cached = -1;
u16 min_stamp = (u16)-1;
// find REG, either free or unlocked temp or oldest non-hinted cached
for (i = 0; i < ARRAY_SIZE(cache_regs) && free < 0; i++) {
if ((cache_regs[i].flags & HRF_TEMP) || (cache_regs[i].flags & HRF_LOCKED))
continue;
if (cache_regs[i].type == HR_FREE || cache_regs[i].type == HR_TEMP)
free = i;
if (cache_regs[i].type == HR_CACHED &&
!((rcache_hint | rcache_locked) & cache_regs[i].gregs)) {
if (cache_regs[i].stamp < min_stamp) {
min_stamp = cache_regs[i].stamp;
cached = i;
}
}
}
if (free >= 0)
i = free;
else if (cached >= 0) {
i = cached;
rcache_evict_vreg(i);
} else {
// if none is available, store in drctmp
emith_ctx_write(hr, offsetof(SH2, drc_tmp));
rcache_free_tmp(hr);
return -1;
}
cache_regs[i].type = HR_CACHED;
cache_regs[i].gregs = 0; // not storing any guest register
cache_regs[i].flags &= (HRF_TEMP|HRF_REG);
cache_regs[i].flags |= HRF_LOCKED;
cache_regs[i].stamp = ++rcache_counter;
emith_move_r_r(cache_regs[i].hreg, hr);
rcache_free_tmp(hr);
return i;
}
static int rcache_restore_tmp(int r)
{
int hr;
// find REG with tmp store: cached but with no gregs
if (r >= 0) {
if (cache_regs[r].type != HR_CACHED || cache_regs[r].gregs) {
printf("invalid tmp storage %d\n", r);
exit(1);
}
// found, transform to a TEMP
cache_regs[r].type = HR_TEMP;
cache_regs[r].flags |= HRF_LOCKED;
return cache_regs[r].hreg;
}
// if not available, create a TEMP store and fetch from drctmp
hr = rcache_get_tmp();
emith_ctx_read(hr, offsetof(SH2, drc_tmp));
return hr;
}
static void rcache_unlock(int hr)
{
if (hr >= 0) {
cache_regs[hr].flags &= ~HRF_LOCKED;
rcache_locked &= ~cache_regs[hr].gregs;
}
}
static void rcache_unlock_all(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(cache_regs); i++)
cache_regs[i].flags &= ~HRF_LOCKED;
}
static inline void rcache_set_locked(u32 mask)
{
rcache_locked = mask & ~rcache_static;
}
static inline void rcache_set_hint_soon(u32 mask)
{
rcache_hint_soon = mask & ~rcache_static;
}
static inline void rcache_set_hint_late(u32 mask)
{
rcache_hint_late = mask & ~rcache_static;
}
static inline void rcache_set_hint_write(u32 mask)
{
rcache_hint_write = mask & ~rcache_static;
}
static inline int rcache_is_hinted(sh2_reg_e r)
{
// consider static REGs as always hinted, since they are always there
return ((rcache_hint | rcache_static) & (1 << r));
}
static inline int rcache_is_cached(sh2_reg_e r)
{
// consider static REGs as always hinted, since they are always there
return (guest_regs[r].vreg >= 0);
}
static inline u32 rcache_used_hreg_mask(void)
{
u32 mask = 0;
int i;
for (i = 0; i < ARRAY_SIZE(cache_regs); i++)
if (cache_regs[i].type != HR_FREE)
mask |= 1 << cache_regs[i].hreg;
return mask & ~rcache_static;
}
static inline u32 rcache_dirty_mask(void)
{
u32 mask = 0;
int i;
for (i = 0; i < ARRAY_SIZE(guest_regs); i++)
if (guest_regs[i].flags & GRF_DIRTY)
mask |= 1 << i;
mask |= gconst_dirty_mask();
return mask;
}
static inline u32 rcache_reg_mask(void)
{
u32 mask = 0;
int i;
for (i = 0; i < ARRAY_SIZE(cache_regs); i++)
if (cache_regs[i].type == HR_CACHED)
mask |= cache_regs[i].gregs;
return mask;
}
static void rcache_clean_tmp(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(cache_regs); i++)
if (cache_regs[i].type == HR_CACHED && (cache_regs[i].flags & HRF_TEMP))
#if REMAP_REGISTER
rcache_remap_vreg(i);
#else
rcache_clean_vreg(i);
#endif
}
static void rcache_clean_mask(u32 mask)
{
int i;
// XXX consider gconst?
if (!(mask &= ~rcache_static & ~gconst_dirty_mask()))
return;
// clean only vregs where all aliases are covered by the mask
for (i = 0; i < ARRAY_SIZE(cache_regs); i++)
if (cache_regs[i].type == HR_CACHED &&
(cache_regs[i].gregs & mask) && !(cache_regs[i].gregs & ~mask))
rcache_clean_vreg(i);
}
static void rcache_clean(void)
{
int i;
gconst_clean();
for (i = ARRAY_SIZE(cache_regs)-1; i >= 0; i--)
if (cache_regs[i].type == HR_CACHED || cache_regs[i].type == HR_STATIC)
rcache_clean_vreg(i);
}
static void rcache_invalidate_tmp(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(cache_regs); i++) {
if (cache_regs[i].flags & HRF_TEMP) {
if (cache_regs[i].type == HR_CACHED)
rcache_unmap_vreg(i);
cache_regs[i].type = HR_FREE;
cache_regs[i].flags &= (HRF_TEMP|HRF_REG);
cache_regs[i].gregs = 0;
}
}
}
static void rcache_invalidate(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(cache_regs); i++) {
cache_regs[i].flags &= (HRF_TEMP|HRF_REG);
if (cache_regs[i].type != HR_STATIC)
cache_regs[i].type = HR_FREE;
cache_regs[i].gregs = 0;
}
for (i = 0; i < ARRAY_SIZE(guest_regs); i++) {
guest_regs[i].flags &= GRF_STATIC;
if (!(guest_regs[i].flags & GRF_STATIC))
guest_regs[i].vreg = -1;
else {
if (guest_regs[i].vreg < 0)
emith_ctx_read(cache_regs[guest_regs[i].sreg].hreg, i*4);
else if (guest_regs[i].vreg != guest_regs[i].sreg)
emith_move_r_r(cache_regs[guest_regs[i].sreg].hreg,
cache_regs[guest_regs[i].vreg].hreg);
cache_regs[guest_regs[i].sreg].gregs = 1 << i;
guest_regs[i].vreg = guest_regs[i].sreg;
}
}
rcache_counter = 0;
rcache_hint_soon = rcache_hint_late = rcache_hint_write = 0;
gconst_invalidate();
}
static void rcache_flush(void)
{
rcache_unlock_all();
rcache_clean();
rcache_invalidate();
}
static void rcache_init(void)
{
static int once = 1;
int i;
// init is executed on every rom load, but this must only be executed once...
if (once) {
memset(reg_map_host, -1, sizeof(reg_map_host));
for (i = 0; i < ARRAY_SIZE(cache_regs); i++)
reg_map_host[cache_regs[i].hreg] = i;
for (i = 0; i < ARRAY_SIZE(guest_regs); i++)
if (guest_regs[i].flags & GRF_STATIC) {
rcache_static |= (1 << i);
guest_regs[i].sreg = reg_map_host[guest_regs[i].sreg];
cache_regs[guest_regs[i].sreg].type = HR_STATIC;
} else
guest_regs[i].sreg = -1;
once = 0;
}
for (i = 0; i < ARRAY_SIZE(guest_regs); i++)
if (guest_regs[i].flags & GRF_STATIC) {
guest_regs[i].vreg = guest_regs[i].sreg;
cache_regs[guest_regs[i].sreg].gregs = (1 << i);
}
rcache_invalidate();
}
// ---------------------------------------------------------------
static int emit_get_rbase_and_offs(SH2 *sh2, u32 a, u32 *offs)
{
u32 omask = 0xff; // offset mask, XXX: ARM oriented..
u32 mask = 0;
int poffs;
int hr;
unsigned long la;
poffs = dr_ctx_get_mem_ptr(a, &mask);
if (poffs == -1)
return -1;
hr = rcache_get_tmp();
if (mask < 0x1000) {
// can't access data array or BIOS directly from ROM or SDRAM,
// since code may run on both SH2s (tcache_id of translation block needed))
emith_ctx_read_ptr(hr, poffs);
if (a & mask & ~omask)
emith_add_r_r_ptr_imm(hr, hr, a & mask & ~omask);
*offs = a & omask;
} else {
// known fixed host address
la = (unsigned long)*(void **)((char *)sh2 + poffs) + (a & mask);
*offs = la & omask;
emith_move_r_ptr_imm(hr, la & ~omask);
}
return hr;
}
// read const data from const ROM address
static int emit_get_rom_data(sh2_reg_e r, u32 offs, int size, u32 *val)
{
u32 tmp;
*val = 0;
if (gconst_get(r, &tmp)) {
tmp += offs;
if (dr_is_rom(tmp)) {
switch (size & MF_SIZEMASK) {
case 0: *val = (s8)p32x_sh2_read8(tmp, sh2s); break; // 8
case 1: *val = (s16)p32x_sh2_read16(tmp, sh2s); break; // 16
case 2: *val = p32x_sh2_read32(tmp, sh2s); break; // 32
}
return 1;
}
}
return 0;
}
static void emit_move_r_imm32(sh2_reg_e dst, u32 imm)
{
#if PROPAGATE_CONSTANTS
gconst_new(dst, imm);
#else
int hr = rcache_get_reg(dst, RC_GR_WRITE, NULL);
emith_move_r_imm(hr, imm);
#endif
}
static void emit_move_r_r(sh2_reg_e dst, sh2_reg_e src)
{
int hr_d, hr_s;
if (guest_regs[src].vreg >= 0 || gconst_check(src) || rcache_is_hinted(src)) {
hr_s = rcache_get_reg(src, RC_GR_READ, NULL);
#if ALIAS_REGISTERS
// check for aliasing
int i = guest_regs[src].vreg;
if (guest_regs[dst].vreg != i) {
// remove possible old mapping of dst
if (guest_regs[dst].vreg >= 0)
rcache_remove_vreg_alias(guest_regs[dst].vreg, dst);
// make dst an alias of src
rcache_add_vreg_alias(i, dst);
cache_regs[i].flags |= HRF_DIRTY;
guest_regs[dst].flags |= GRF_DIRTY;
gconst_kill(dst);
#if PROPAGATE_CONSTANTS
gconst_copy(dst, src);
#endif
return;
}
#endif
hr_d = rcache_get_reg(dst, RC_GR_WRITE, NULL);
emith_move_r_r(hr_d, hr_s);
#if PROPAGATE_CONSTANTS
gconst_copy(dst, src);
#endif
} else {
hr_d = rcache_get_reg(dst, RC_GR_WRITE, NULL);
emith_ctx_read(hr_d, src * 4);
}
}
// T must be clear, and comparison done just before this
static void emit_or_t_if_eq(int srr)
{
EMITH_SJMP_START(DCOND_NE);
emith_or_r_imm_c(DCOND_EQ, srr, T);
EMITH_SJMP_END(DCOND_NE);
}
// rd = @(arg0)
static int emit_memhandler_read(int size)
{
rcache_clean_tmp();
#ifndef DRC_SR_REG
// must writeback cycles for poll detection stuff
if (guest_regs[SHR_SR].vreg != -1)
rcache_evict_vreg(guest_regs[SHR_SR].vreg);
#endif
switch (size & MF_SIZEMASK) {
case 0: emith_call(sh2_drc_read8); break; // 8
case 1: emith_call(sh2_drc_read16); break; // 16
case 2: emith_call(sh2_drc_read32); break; // 32
}
rcache_invalidate_tmp();
return rcache_get_tmp_ret();
}
// @(arg0) = arg1
static void emit_memhandler_write(int size)
{
rcache_clean_tmp();
#ifndef DRC_SR_REG
if (guest_regs[SHR_SR].vreg != -1)
rcache_evict_vreg(guest_regs[SHR_SR].vreg);
#endif
switch (size & MF_SIZEMASK) {
case 0: emith_call(sh2_drc_write8); break; // 8
case 1: emith_call(sh2_drc_write16); break; // 16
case 2: emith_call(sh2_drc_write32); break; // 32
}
rcache_invalidate_tmp();
}
// rd = @(Rs,#offs); rd < 0 -> return a temp
static int emit_memhandler_read_rr(SH2 *sh2, sh2_reg_e rd, sh2_reg_e rs, u32 offs, int size)
{
int hr, hr2;
u32 val, offs2;
#if PROPAGATE_CONSTANTS
if (emit_get_rom_data(rs, offs, size, &val)) {
if (rd == SHR_TMP) {
hr2 = rcache_get_tmp();
emith_move_r_imm(hr2, val);
} else {
emit_move_r_imm32(rd, val);
hr2 = rcache_get_reg(rd, RC_GR_RMW, NULL);
}
if ((size & MF_POSTINCR) && gconst_get(rs, &val))
gconst_new(rs, val + (1 << (size & MF_SIZEMASK)));
return hr2;
}
if (gconst_get(rs, &val)) {
hr = emit_get_rbase_and_offs(sh2, val + offs, &offs2);
if (hr != -1) {
if (rd == SHR_TMP)
hr2 = rcache_get_tmp();
else
hr2 = rcache_get_reg(rd, RC_GR_WRITE, NULL);
switch (size & MF_SIZEMASK) {
case 0: // 8
emith_read8s_r_r_offs(hr2, hr, offs2 ^ 1);
break;
case 1: // 16
emith_read16s_r_r_offs(hr2, hr, offs2);
break;
case 2: // 32
emith_read_r_r_offs(hr2, hr, offs2);
emith_ror(hr2, hr2, 16);
break;
}
rcache_free_tmp(hr);
if (size & MF_POSTINCR)
gconst_new(rs, val + (1 << (size & MF_SIZEMASK)));
return hr2;
}
}
#endif
if (gconst_get(rs, &val) && (!(size & MF_POSTINCR) /*|| !(rcache_hint_soon & (1 << rs))*/)) {
hr = rcache_get_tmp_arg(0);
emith_move_r_imm(hr, val + offs);
if (size & MF_POSTINCR)
gconst_new(rs, val + (1 << (size & MF_SIZEMASK)));
} else if (offs || (size & MF_POSTINCR)) {
hr = rcache_get_reg_arg(0, rs, &hr2);
if (offs || hr != hr2)
emith_add_r_r_imm(hr, hr2, offs);
if (size & MF_POSTINCR) {
hr = rcache_get_reg(rs, RC_GR_WRITE, NULL);
emith_add_r_r_imm(hr, hr2, 1 << (size & MF_SIZEMASK));
}
} else
rcache_get_reg_arg(0, rs, NULL);
hr = emit_memhandler_read(size);
size &= MF_SIZEMASK;
if (rd == SHR_TMP)
hr2 = hr;
else
#if REMAP_REGISTER
hr2 = rcache_map_reg(rd, hr, size != 2 ? RC_GR_RMW : RC_GR_WRITE);
#else
hr2 = rcache_get_reg(rd, RC_GR_WRITE, NULL);
#endif
if (rd != SHR_TMP && size != 2) { // 16, 8
emith_sext(hr2, hr, size ? 16 : 8);
} else if (hr != hr2) // 32
emith_move_r_r(hr2, hr);
if (hr != hr2)
rcache_free_tmp(hr);
return hr2;
}
// @(Rs,#offs) = rd; rd < 0 -> write arg1
static void emit_memhandler_write_rr(SH2 *sh2, sh2_reg_e rd, sh2_reg_e rs, u32 offs, int size)
{
int hr, hr2;
u32 val;
if (rd == SHR_TMP) {
host_arg2reg(hr2, 1);
} else if ((size & MF_PREDECR) && rd == rs) { // must avoid caching rd in arg1
hr2 = rcache_get_reg_arg(1, rd, &hr);
if (hr != hr2) emith_move_r_r(hr2, hr);
} else
hr2 = rcache_get_reg_arg(1, rd, NULL);
if (gconst_get(rs, &val) && (!(size & MF_PREDECR) /*|| !(rcache_hint_soon & (1 << rs))*/)) {
if (size & MF_PREDECR) {
val -= 1 << (size & MF_SIZEMASK);
gconst_new(rs, val);
}
hr = rcache_get_tmp_arg(0);
emith_move_r_imm(hr, val + offs);
} else if (offs || (size & MF_PREDECR)) {
if (size & MF_PREDECR) {
hr = rcache_get_reg(rs, RC_GR_RMW, &hr2);
emith_sub_r_r_imm(hr, hr2, 1 << (size & MF_SIZEMASK));
}
hr = rcache_get_reg_arg(0, rs, &hr2);
if (offs || hr != hr2)
emith_add_r_r_imm(hr, hr2, offs);
} else
rcache_get_reg_arg(0, rs, NULL);
emit_memhandler_write(size);
}
// rd = @(Rx,Ry); rd < 0 -> return a temp
static int emit_indirect_indexed_read(SH2 *sh2, sh2_reg_e rd, sh2_reg_e rx, sh2_reg_e ry, int size)
{
int hr, hr2;
int tx, ty;
#if PROPAGATE_CONSTANTS
u32 offs;
if (gconst_get(ry, &offs))
return emit_memhandler_read_rr(sh2, rd, rx, offs, size);
if (gconst_get(rx, &offs))
return emit_memhandler_read_rr(sh2, rd, ry, offs, size);
#endif
hr = rcache_get_reg_arg(0, rx, &tx);
ty = rcache_get_reg(ry, RC_GR_READ, NULL);
emith_add_r_r_r(hr, tx, ty);
hr = emit_memhandler_read(size);
size &= MF_SIZEMASK;
if (rd != SHR_TMP)
#if REMAP_REGISTER
hr2 = rcache_map_reg(rd, hr, size != 2 ? RC_GR_RMW : RC_GR_WRITE);
#else
hr2 = rcache_get_reg(rd, RC_GR_WRITE, NULL);
#endif
else
hr2 = hr;
if (rd != SHR_TMP && size != 2) { // 16, 8
emith_sext(hr2, hr, size ? 16 : 8);
} else if (hr != hr2) // 32
emith_move_r_r(hr2, hr);
if (hr != hr2)
rcache_free_tmp(hr);
return hr2;
}
// @(Rx,Ry) = rd; rd < 0 -> write arg1
static void emit_indirect_indexed_write(SH2 *sh2, sh2_reg_e rd, sh2_reg_e rx, sh2_reg_e ry, int size)
{
int hr, tx, ty;
#if PROPAGATE_CONSTANTS
u32 offs;
if (gconst_get(ry, &offs))
return emit_memhandler_write_rr(sh2, rd, rx, offs, size);
if (gconst_get(rx, &offs))
return emit_memhandler_write_rr(sh2, rd, ry, offs, size);
#endif
if (rd != SHR_TMP)
rcache_get_reg_arg(1, rd, NULL);
hr = rcache_get_reg_arg(0, rx, &tx);
ty = rcache_get_reg(ry, RC_GR_READ, NULL);
emith_add_r_r_r(hr, tx, ty);
emit_memhandler_write(size);
}
// @Rn+,@Rm+
static void emit_indirect_read_double(SH2 *sh2, int *rnr, int *rmr, sh2_reg_e rn, sh2_reg_e rm, int size)
{
int tmp;
// unlock rn, rm here to avoid REG shortage in MAC operation
tmp = emit_memhandler_read_rr(sh2, SHR_TMP, rn, 0, size | MF_POSTINCR);
rcache_unlock(guest_regs[rn].vreg);
tmp = rcache_save_tmp(tmp);
*rmr = emit_memhandler_read_rr(sh2, SHR_TMP, rm, 0, size | MF_POSTINCR);
rcache_unlock(guest_regs[rm].vreg);
*rnr = rcache_restore_tmp(tmp);
}
static void emit_do_static_regs(int is_write, int tmpr)
{
int i, r, count;
for (i = 0; i < ARRAY_SIZE(guest_regs); i++) {
if (guest_regs[i].flags & GRF_STATIC)
r = cache_regs[guest_regs[i].vreg].hreg;
else
continue;
for (count = 1; i < ARRAY_SIZE(guest_regs) - 1; i++, r++) {
if ((guest_regs[i + 1].flags & GRF_STATIC) &&
cache_regs[guest_regs[i + 1].vreg].hreg == r + 1)
count++;
else
break;
}
if (count > 1) {
// i, r point to last item
if (is_write)
emith_ctx_write_multiple(r - count + 1, (i - count + 1) * 4, count, tmpr);
else
emith_ctx_read_multiple(r - count + 1, (i - count + 1) * 4, count, tmpr);
} else {
if (is_write)
emith_ctx_write(r, i * 4);
else
emith_ctx_read(r, i * 4);
}
}
}
/* just after lookup function, jump to address returned */
static void emit_block_entry(void)
{
emith_tst_r_r_ptr(RET_REG, RET_REG);
EMITH_SJMP_START(DCOND_EQ);
emith_jump_reg_c(DCOND_NE, RET_REG);
EMITH_SJMP_END(DCOND_EQ);
}
#define DELAY_SAVE_T(sr) { \
emith_bic_r_imm(sr, T_save); \
emith_tst_r_imm(sr, T); \
EMITH_SJMP_START(DCOND_EQ); \
emith_or_r_imm_c(DCOND_NE, sr, T_save); \
EMITH_SJMP_END(DCOND_EQ); \
}
#define FLUSH_CYCLES(sr) \
if (cycles > 0) { \
emith_sub_r_imm(sr, cycles << 12); \
cycles = 0; \
}
static void *dr_get_pc_base(u32 pc, int is_slave);
static void REGPARM(2) *sh2_translate(SH2 *sh2, int tcache_id)
{
u32 branch_target_pc[MAX_LOCAL_BRANCHES];
void *branch_target_ptr[MAX_LOCAL_BRANCHES];
int branch_target_count = 0;
void *branch_patch_ptr[MAX_LOCAL_BRANCHES];
u32 branch_patch_pc[MAX_LOCAL_BRANCHES];
int branch_patch_count = 0;
u8 op_flags[BLOCK_INSN_LIMIT];
struct {
u32 test_irq:1;
u32 pending_branch_direct:1;
u32 pending_branch_indirect:1;
} drcf = { 0, };
// PC of current, first, last SH2 insn
u32 pc, base_pc, end_pc;
u32 base_literals, end_literals;
void *block_entry_ptr;
struct block_desc *block;
struct block_entry *entry;
u16 *dr_pc_base;
struct op_data *opd;
int blkid_main = 0;
int skip_op = 0;
int tmp, tmp2;
int cycles;
int i, v;
u32 u;
int op;
u16 crc;
base_pc = sh2->pc;
// get base/validate PC
dr_pc_base = dr_get_pc_base(base_pc, sh2->is_slave);
if (dr_pc_base == (void *)-1) {
printf("invalid PC, aborting: %08x\n", base_pc);
// FIXME: be less destructive
exit(1);
}
// initial passes to disassemble and analyze the block
crc = scan_block(base_pc, sh2->is_slave, op_flags, &end_pc, &base_literals, &end_literals);
end_literals = dr_check_nolit(base_literals, end_literals, tcache_id);
if (base_literals == end_literals) // map empty lit section to end of code
base_literals = end_literals = end_pc;
// if there is already a translated but inactive block, reuse it
block = dr_find_inactive_block(tcache_id, crc, base_pc, end_pc - base_pc,
base_literals, end_literals - base_literals);
if (block) {
// connect branches
dbg(2, "== %csh2 reuse block %08x-%08x,%08x-%08x -> %p", sh2->is_slave ? 's' : 'm',
base_pc, end_pc, base_literals, end_literals, block->entryp->tcache_ptr);
for (i = 0; i < block->entry_count; i++) {
entry = &block->entryp[i];
add_to_hashlist(entry, tcache_id);
#if LINK_BRANCHES
// incoming branches
dr_link_blocks(entry, tcache_id);
if (!tcache_id)
dr_link_blocks(entry, sh2->is_slave?2:1);
// outgoing branches
dr_link_outgoing(entry, tcache_id, sh2->is_slave);
#endif
}
// mark memory for overwrite detection
dr_mark_memory(1, block, tcache_id, 0);
block->active = 1;
return block->entryp[0].tcache_ptr;
}
// collect branch_targets that don't land on delay slots
for (pc = base_pc, i = 0; pc < end_pc; i++, pc += 2) {
if (!(op_flags[i] & OF_BTARGET))
continue;
if (op_flags[i] & OF_DELAY_OP) {
op_flags[i] &= ~OF_BTARGET;
continue;
}
ADD_TO_ARRAY(branch_target_pc, branch_target_count, pc, break);
}
if (branch_target_count > 0) {
memset(branch_target_ptr, 0, sizeof(branch_target_ptr[0]) * branch_target_count);
}
tcache_ptr = dr_prepare_cache(tcache_id, (end_pc - base_pc) / 2);
#if (DRC_DEBUG & 4)
tcache_dsm_ptrs[tcache_id] = tcache_ptr;
#endif
block = dr_add_block(base_pc, end_pc - base_pc, base_literals,
end_literals - base_literals, crc, sh2->is_slave, &blkid_main);
if (block == NULL)
return NULL;
block_entry_ptr = tcache_ptr;
dbg(2, "== %csh2 block #%d,%d %08x-%08x,%08x-%08x -> %p", sh2->is_slave ? 's' : 'm',
tcache_id, blkid_main, base_pc, end_pc, base_literals, end_literals, block_entry_ptr);
// clear stale state after compile errors
rcache_invalidate();
// -------------------------------------------------
// 3rd pass: actual compilation
pc = base_pc;
cycles = 0;
for (i = 0; pc < end_pc; i++)
{
u32 delay_dep_fw = 0, delay_dep_bk = 0;
int tmp3, tmp4;
int sr;
opd = &ops[i];
op = FETCH_OP(pc);
#if (DRC_DEBUG & 2)
insns_compiled++;
#endif
#if (DRC_DEBUG & 4)
DasmSH2(sh2dasm_buff, pc, op);
printf("%c%08x %04x %s\n", (op_flags[i] & OF_BTARGET) ? '*' : ' ',
pc, op, sh2dasm_buff);
#endif
if (op_flags[i] & OF_BTARGET)
{
if (pc != base_pc)
{
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
FLUSH_CYCLES(sr);
rcache_flush();
// make block entry
v = block->entry_count;
entry = &block->entryp[v];
if (v < ARRAY_SIZE(block->entryp))
{
entry = &block->entryp[v];
entry->pc = pc;
entry->tcache_ptr = tcache_ptr;
entry->links = entry->o_links = NULL;
#if (DRC_DEBUG & 2)
entry->block = block;
#endif
add_to_hashlist(entry, tcache_id);
block->entry_count++;
dbg(2, "-- %csh2 block #%d,%d entry %08x -> %p",
sh2->is_slave ? 's' : 'm', tcache_id, blkid_main,
pc, tcache_ptr);
}
else {
dbg(1, "too many entryp for block #%d,%d pc=%08x",
tcache_id, blkid_main, pc);
break;
}
} else {
entry = block->entryp;
}
// since we made a block entry, link any other blocks that jump to it
dr_link_blocks(entry, tcache_id);
if (!tcache_id) // can safely link from cpu-local to global memory
dr_link_blocks(entry, sh2->is_slave?2:1);
v = find_in_array(branch_target_pc, branch_target_count, pc);
if (v >= 0)
branch_target_ptr[v] = tcache_ptr;
// must update PC
emit_move_r_imm32(SHR_PC, pc);
rcache_clean();
#if (DRC_DEBUG & 0x10)
rcache_get_reg_arg(0, SHR_PC, NULL);
tmp = emit_memhandler_read(1);
tmp2 = rcache_get_tmp();
tmp3 = rcache_get_tmp();
emith_move_r_imm(tmp2, (s16)FETCH_OP(pc));
emith_move_r_imm(tmp3, 0);
emith_cmp_r_r(tmp, tmp2);
EMITH_SJMP_START(DCOND_EQ);
emith_read_r_r_offs_c(DCOND_NE, tmp3, tmp3, 0); // crash
EMITH_SJMP_END(DCOND_EQ);
rcache_free_tmp(tmp);
rcache_free_tmp(tmp2);
rcache_free_tmp(tmp3);
#endif
// check cycles
sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
emith_cmp_r_imm(sr, 0);
emith_jump_cond(DCOND_LE, sh2_drc_exit);
#if (DRC_DEBUG & 32)
// block hit counter
tmp = rcache_get_tmp_arg(0);
tmp2 = rcache_get_tmp_arg(1);
emith_move_r_ptr_imm(tmp, (uptr)entry);
emith_read_r_r_offs(tmp2, tmp, offsetof(struct block_entry, entry_count));
emith_add_r_imm(tmp2, 1);
emith_write_r_r_offs(tmp2, tmp, offsetof(struct block_entry, entry_count));
rcache_free_tmp(tmp);
rcache_free_tmp(tmp2);
#endif
#if (DRC_DEBUG & (8|256|512|1024))
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
rcache_clean();
tmp = rcache_used_hreg_mask();
emith_save_caller_regs(tmp);
emit_do_static_regs(1, 0);
rcache_get_reg_arg(2, SHR_SR, NULL);
tmp2 = rcache_get_tmp_arg(0);
tmp3 = rcache_get_tmp_arg(1);
emith_move_r_ptr_imm(tmp2, tcache_ptr);
emith_move_r_r_ptr(tmp3,CONTEXT_REG);
emith_call(sh2_drc_log_entry);
emith_restore_caller_regs(tmp);
rcache_invalidate_tmp();
#endif
do_host_disasm(tcache_id);
rcache_unlock_all();
}
#ifdef DRC_CMP
if (!(op_flags[i] & OF_DELAY_OP)) {
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
FLUSH_CYCLES(sr);
rcache_clean();
tmp = rcache_used_hreg_mask();
emith_save_caller_regs(tmp);
emit_do_static_regs(1, 0);
emith_pass_arg_r(0, CONTEXT_REG);
emith_call(do_sh2_cmp);
emith_restore_caller_regs(tmp);
}
#endif
emith_pool_check();
pc += 2;
if (skip_op > 0) {
skip_op--;
continue;
}
if (op_flags[i] & OF_DELAY_OP)
{
// handle delay slot dependencies
delay_dep_fw = opd->dest & ops[i-1].source;
delay_dep_bk = opd->source & ops[i-1].dest;
if (delay_dep_fw & BITMASK1(SHR_T)) {
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
DELAY_SAVE_T(sr);
}
if (delay_dep_bk & BITMASK1(SHR_PC)) {
if (opd->op != OP_LOAD_POOL && opd->op != OP_MOVA) {
// can only be those 2 really..
elprintf_sh2(sh2, EL_ANOMALY,
"drc: illegal slot insn %04x @ %08x?", op, pc - 2);
}
// store PC for MOVA/MOV @PC address calculation
if (opd->imm != 0)
; // case OP_BRANCH - addr already resolved in scan_block
else {
switch (ops[i-1].op) {
case OP_BRANCH:
emit_move_r_imm32(SHR_PC, ops[i-1].imm);
break;
case OP_BRANCH_CT:
case OP_BRANCH_CF:
sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
tmp = rcache_get_reg(SHR_PC, RC_GR_WRITE, NULL);
emith_move_r_imm(tmp, pc);
emith_tst_r_imm(sr, T);
tmp2 = ops[i-1].op == OP_BRANCH_CT ? DCOND_NE : DCOND_EQ;
tmp3 = ops[i-1].op == OP_BRANCH_CT ? DCOND_EQ : DCOND_NE;
EMITH_SJMP_START(tmp3);
emith_move_r_imm_c(tmp2, tmp, ops[i-1].imm);
EMITH_SJMP_END(tmp3);
break;
case OP_BRANCH_N: // BT/BF known not to be taken
// XXX could modify opd->imm instead?
emit_move_r_imm32(SHR_PC, pc);
break;
// case OP_BRANCH_R OP_BRANCH_RF - PC already loaded
}
}
}
//if (delay_dep_fw & ~BITMASK1(SHR_T))
// dbg(1, "unhandled delay_dep_fw: %x", delay_dep_fw & ~BITMASK1(SHR_T));
if (delay_dep_bk & ~BITMASK2(SHR_PC, SHR_PR))
dbg(1, "unhandled delay_dep_bk: %x", delay_dep_bk);
rcache_set_hint_soon(0);
rcache_set_hint_late(0);
rcache_set_hint_write(0);
}
else
{
// inform cache about future register usage
u32 late = 0; // regs read by future ops
u32 write = 0; // regs written to (to detect write before read)
u32 soon = 0; // regs read soon
tmp = OP_ISBRANCH(opd[0].op); // branch insn detected
for (v = 1; v <= 9; v++) {
// no sense in looking any further than the next rcache flush
if (pc + 2*v < end_pc && !(op_flags[i+v] & OF_BTARGET) &&
(!tmp || (op_flags[i+v] & OF_DELAY_OP))) {
late |= opd[v].source & ~write;
// ignore source regs after they have been written to
write |= opd[v].dest;
} else {
// upcoming rcache_flush, start writing back unused dirty stuff
tmp2 = write|opd[0].source|opd[0].dest; // insn may change reg aliases
rcache_clean_mask(rcache_dirty_mask() & ~tmp2);
break;
}
// XXX must also include test-irq locations!
tmp |= (OP_ISBRANCH(opd[v].op) || opd[v].op == OP_RTE ||
opd[v].op == OP_TRAPA || opd[v].op == OP_UNDEFINED);
// regs needed in the next few instructions
if (v <= 4)
soon = late;
}
rcache_set_hint_soon(late); // insns 1-3
rcache_set_hint_late(late & ~soon); // insns 4-9
rcache_set_hint_write(write & ~(late|soon)); // next access is write
}
rcache_set_locked(opd[0].source); // try not to evict src regs for this op
switch (opd->op)
{
case OP_BRANCH_N:
// never taken, just use up cycles
goto end_op;
case OP_BRANCH:
case OP_BRANCH_CT:
case OP_BRANCH_CF:
if (opd->dest & BITMASK1(SHR_PR))
emit_move_r_imm32(SHR_PR, pc + 2);
drcf.pending_branch_direct = 1;
goto end_op;
case OP_BRANCH_R:
if (opd->dest & BITMASK1(SHR_PR))
emit_move_r_imm32(SHR_PR, pc + 2);
if (gconst_get(opd->rm, &u)) {
opd->imm = u;
drcf.pending_branch_direct = 1;
} else {
emit_move_r_r(SHR_PC, opd->rm);
drcf.pending_branch_indirect = 1;
}
goto end_op;
case OP_BRANCH_RF:
if (gconst_get(GET_Rn(), &u)) {
if (opd->dest & BITMASK1(SHR_PR))
emit_move_r_imm32(SHR_PR, pc + 2);
opd->imm = pc + 2 + u;
drcf.pending_branch_direct = 1;
} else {
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
tmp = rcache_get_reg(SHR_PC, RC_GR_WRITE, NULL);
emith_move_r_imm(tmp, pc + 2);
if (opd->dest & BITMASK1(SHR_PR)) {
tmp3 = rcache_get_reg(SHR_PR, RC_GR_WRITE, NULL);
emith_move_r_r(tmp3, tmp);
}
emith_add_r_r(tmp, tmp2);
drcf.pending_branch_indirect = 1;
}
goto end_op;
case OP_SLEEP: // SLEEP 0000000000011011
printf("TODO sleep\n");
goto end_op;
case OP_RTE: // RTE 0000000000101011
// pop PC
emit_memhandler_read_rr(sh2, SHR_PC, SHR_SP, 0, 2 | MF_POSTINCR);
// pop SR
tmp = emit_memhandler_read_rr(sh2, SHR_TMP, SHR_SP, 0, 2 | MF_POSTINCR);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_write_sr(sr, tmp);
rcache_free_tmp(tmp);
drcf.test_irq = 1;
drcf.pending_branch_indirect = 1;
goto end_op;
case OP_UNDEFINED:
elprintf_sh2(sh2, EL_ANOMALY, "drc: unhandled op %04x @ %08x", op, pc-2);
opd->imm = (op_flags[i] & OF_B_IN_DS) ? 6 : 4;
// fallthrough
case OP_TRAPA: // TRAPA #imm 11000011iiiiiiii
// push SR
tmp = rcache_get_reg_arg(1, SHR_SR, &tmp2);
emith_clear_msb(tmp, tmp2, 22);
emit_memhandler_write_rr(sh2, SHR_TMP, SHR_SP, 0, 2 | MF_PREDECR);
// push PC
if (op == OP_TRAPA) {
tmp = rcache_get_tmp_arg(1);
emith_move_r_imm(tmp, pc);
} else if (drcf.pending_branch_indirect) {
tmp = rcache_get_reg_arg(1, SHR_PC, NULL);
} else {
tmp = rcache_get_tmp_arg(1);
emith_move_r_imm(tmp, pc - 2);
}
emith_move_r_imm(tmp, pc);
emit_memhandler_write_rr(sh2, SHR_TMP, SHR_SP, 0, 2 | MF_PREDECR);
// obtain new PC
emit_memhandler_read_rr(sh2, SHR_PC, SHR_VBR, opd->imm * 4, 2);
// indirect jump -> back to dispatcher
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
FLUSH_CYCLES(sr);
rcache_flush();
emith_jump(sh2_drc_dispatcher);
goto end_op;
case OP_LOAD_POOL:
#if PROPAGATE_CONSTANTS
if ((opd->imm && opd->imm >= base_pc && opd->imm < end_literals) ||
dr_is_rom(opd->imm))
{
if (opd->size == 2)
u = FETCH32(opd->imm);
else
u = (s16)FETCH_OP(opd->imm);
// tweak for Blackthorne: avoid stack overwriting
if (GET_Rn() == SHR_SP && u == 0x0603f800) u = 0x0603f880;
gconst_new(GET_Rn(), u);
}
else
#endif
{
if (opd->imm != 0) {
tmp = rcache_get_tmp_arg(0);
emith_move_r_imm(tmp, opd->imm);
} else {
// have to calculate read addr from PC for delay slot
tmp = rcache_get_reg_arg(0, SHR_PC, &tmp2);
if (opd->size == 2) {
emith_add_r_r_imm(tmp, tmp2, 2 + (op & 0xff) * 4);
emith_bic_r_imm(tmp, 3);
}
else
emith_add_r_r_imm(tmp, tmp2, 2 + (op & 0xff) * 2);
}
tmp2 = emit_memhandler_read(opd->size);
#if REMAP_REGISTER
tmp3 = rcache_map_reg(GET_Rn(), tmp2, opd->size != 2 ? RC_GR_RMW : RC_GR_WRITE);
#else
tmp3 = rcache_get_reg(GET_Rn(), RC_GR_WRITE, NULL);
#endif
if (opd->size != 2) {
emith_sext(tmp3, tmp2, 16);
} else if (tmp3 != tmp2)
emith_move_r_r(tmp3, tmp2);
if (tmp3 != tmp2)
rcache_free_tmp(tmp2);
}
goto end_op;
case OP_MOVA: // MOVA @(disp,PC),R0 11000111dddddddd
if (opd->imm != 0)
emit_move_r_imm32(SHR_R0, opd->imm);
else {
// have to calculate addr from PC for delay slot
tmp2 = rcache_get_reg(SHR_PC, RC_GR_READ, NULL);
tmp = rcache_get_reg(SHR_R0, RC_GR_WRITE, NULL);
emith_add_r_r_imm(tmp, tmp2, 2 + (op & 0xff) * 4);
emith_bic_r_imm(tmp, 3);
}
goto end_op;
}
switch ((op >> 12) & 0x0f)
{
/////////////////////////////////////////////
case 0x00:
switch (op & 0x0f)
{
case 0x02:
switch (GET_Fx())
{
case 0: // STC SR,Rn 0000nnnn00000010
tmp2 = SHR_SR;
break;
case 1: // STC GBR,Rn 0000nnnn00010010
tmp2 = SHR_GBR;
break;
case 2: // STC VBR,Rn 0000nnnn00100010
tmp2 = SHR_VBR;
break;
default:
goto default_;
}
if (tmp2 == SHR_SR) {
sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
tmp = rcache_get_reg(GET_Rn(), RC_GR_WRITE, NULL);
emith_clear_msb(tmp, sr, 22); // reserved bits defined by ISA as 0
} else
emit_move_r_r(GET_Rn(), tmp2);
goto end_op;
case 0x04: // MOV.B Rm,@(R0,Rn) 0000nnnnmmmm0100
case 0x05: // MOV.W Rm,@(R0,Rn) 0000nnnnmmmm0101
case 0x06: // MOV.L Rm,@(R0,Rn) 0000nnnnmmmm0110
emit_indirect_indexed_write(sh2, GET_Rm(), SHR_R0, GET_Rn(), op & 3);
goto end_op;
case 0x07: // MUL.L Rm,Rn 0000nnnnmmmm0111
tmp = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp3 = rcache_get_reg(SHR_MACL, RC_GR_WRITE, NULL);
emith_mul(tmp3, tmp2, tmp);
goto end_op;
case 0x08:
switch (GET_Fx())
{
case 0: // CLRT 0000000000001000
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_bic_r_imm(sr, T);
break;
case 1: // SETT 0000000000011000
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_or_r_imm(sr, T);
break;
case 2: // CLRMAC 0000000000101000
emit_move_r_imm32(SHR_MACL, 0);
emit_move_r_imm32(SHR_MACH, 0);
break;
default:
goto default_;
}
goto end_op;
case 0x09:
switch (GET_Fx())
{
case 0: // NOP 0000000000001001
break;
case 1: // DIV0U 0000000000011001
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_bic_r_imm(sr, M|Q|T);
break;
case 2: // MOVT Rn 0000nnnn00101001
sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_WRITE, NULL);
emith_clear_msb(tmp2, sr, 31);
break;
default:
goto default_;
}
goto end_op;
case 0x0a:
switch (GET_Fx())
{
case 0: // STS MACH,Rn 0000nnnn00001010
tmp2 = SHR_MACH;
break;
case 1: // STS MACL,Rn 0000nnnn00011010
tmp2 = SHR_MACL;
break;
case 2: // STS PR,Rn 0000nnnn00101010
tmp2 = SHR_PR;
break;
default:
goto default_;
}
emit_move_r_r(GET_Rn(), tmp2);
goto end_op;
case 0x0c: // MOV.B @(R0,Rm),Rn 0000nnnnmmmm1100
case 0x0d: // MOV.W @(R0,Rm),Rn 0000nnnnmmmm1101
case 0x0e: // MOV.L @(R0,Rm),Rn 0000nnnnmmmm1110
emit_indirect_indexed_read(sh2, GET_Rn(), SHR_R0, GET_Rm(), op & 3);
goto end_op;
case 0x0f: // MAC.L @Rm+,@Rn+ 0000nnnnmmmm1111
emit_indirect_read_double(sh2, &tmp, &tmp2, GET_Rn(), GET_Rm(), 2);
sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
tmp3 = rcache_get_reg(SHR_MACL, RC_GR_RMW, NULL);
tmp4 = rcache_get_reg(SHR_MACH, RC_GR_RMW, NULL);
emith_sh2_macl(tmp3, tmp4, tmp, tmp2, sr);
rcache_free_tmp(tmp2);
rcache_free_tmp(tmp);
goto end_op;
}
goto default_;
/////////////////////////////////////////////
case 0x01: // MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd
emit_memhandler_write_rr(sh2, GET_Rm(), GET_Rn(), (op & 0x0f) * 4, 2);
goto end_op;
case 0x02:
switch (op & 0x0f)
{
case 0x00: // MOV.B Rm,@Rn 0010nnnnmmmm0000
case 0x01: // MOV.W Rm,@Rn 0010nnnnmmmm0001
case 0x02: // MOV.L Rm,@Rn 0010nnnnmmmm0010
emit_memhandler_write_rr(sh2, GET_Rm(), GET_Rn(), 0, op & 3);
goto end_op;
case 0x04: // MOV.B Rm,@-Rn 0010nnnnmmmm0100
case 0x05: // MOV.W Rm,@-Rn 0010nnnnmmmm0101
case 0x06: // MOV.L Rm,@-Rn 0010nnnnmmmm0110
emit_memhandler_write_rr(sh2, GET_Rm(), GET_Rn(), 0, (op & 3) | MF_PREDECR);
goto end_op;
case 0x07: // DIV0S Rm,Rn 0010nnnnmmmm0111
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
tmp3 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
emith_bic_r_imm(sr, M|Q|T);
emith_tst_r_imm(tmp2, (1<<31));
EMITH_SJMP_START(DCOND_EQ);
emith_or_r_imm_c(DCOND_NE, sr, Q);
EMITH_SJMP_END(DCOND_EQ);
emith_tst_r_imm(tmp3, (1<<31));
EMITH_SJMP_START(DCOND_EQ);
emith_or_r_imm_c(DCOND_NE, sr, M);
EMITH_SJMP_END(DCOND_EQ);
emith_teq_r_r(tmp2, tmp3);
EMITH_SJMP_START(DCOND_PL);
emith_or_r_imm_c(DCOND_MI, sr, T);
EMITH_SJMP_END(DCOND_PL);
goto end_op;
case 0x08: // TST Rm,Rn 0010nnnnmmmm1000
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
tmp3 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
emith_bic_r_imm(sr, T);
emith_tst_r_r(tmp2, tmp3);
emit_or_t_if_eq(sr);
goto end_op;
case 0x09: // AND Rm,Rn 0010nnnnmmmm1001
if (GET_Rm() != GET_Rn()) {
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
emith_and_r_r_r(tmp, tmp3, tmp2);
}
goto end_op;
case 0x0a: // XOR Rm,Rn 0010nnnnmmmm1010
#if PROPAGATE_CONSTANTS
if (GET_Rn() == GET_Rm()) {
gconst_new(GET_Rn(), 0);
goto end_op;
}
#endif
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
emith_eor_r_r_r(tmp, tmp3, tmp2);
goto end_op;
case 0x0b: // OR Rm,Rn 0010nnnnmmmm1011
if (GET_Rm() != GET_Rn()) {
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
emith_or_r_r_r(tmp, tmp3, tmp2);
}
goto end_op;
case 0x0c: // CMP/STR Rm,Rn 0010nnnnmmmm1100
tmp = rcache_get_tmp();
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
tmp3 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
emith_eor_r_r_r(tmp, tmp2, tmp3);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_bic_r_imm(sr, T);
emith_tst_r_imm(tmp, 0x000000ff);
EMITH_SJMP_START(DCOND_EQ);
emith_tst_r_imm_c(DCOND_NE, tmp, 0x0000ff00);
EMITH_SJMP_START(DCOND_EQ);
emith_tst_r_imm_c(DCOND_NE, tmp, 0x00ff0000);
EMITH_SJMP_START(DCOND_EQ);
emith_tst_r_imm_c(DCOND_NE, tmp, 0xff000000);
EMITH_SJMP_END(DCOND_EQ);
EMITH_SJMP_END(DCOND_EQ);
EMITH_SJMP_END(DCOND_EQ);
emit_or_t_if_eq(sr);
rcache_free_tmp(tmp);
goto end_op;
case 0x0d: // XTRCT Rm,Rn 0010nnnnmmmm1101
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
emith_lsr(tmp, tmp3, 16);
emith_or_r_r_lsl(tmp, tmp2, 16);
goto end_op;
case 0x0e: // MULU.W Rm,Rn 0010nnnnmmmm1110
case 0x0f: // MULS.W Rm,Rn 0010nnnnmmmm1111
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
tmp3 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp = rcache_get_reg(SHR_MACL, RC_GR_WRITE, NULL);
if (op & 1) {
emith_sext(tmp, tmp2, 16);
} else
emith_clear_msb(tmp, tmp2, 16);
tmp2 = rcache_get_tmp();
if (op & 1) {
emith_sext(tmp2, tmp3, 16);
} else
emith_clear_msb(tmp2, tmp3, 16);
emith_mul(tmp, tmp, tmp2);
rcache_free_tmp(tmp2);
goto end_op;
}
goto default_;
/////////////////////////////////////////////
case 0x03:
switch (op & 0x0f)
{
case 0x00: // CMP/EQ Rm,Rn 0011nnnnmmmm0000
case 0x02: // CMP/HS Rm,Rn 0011nnnnmmmm0010
case 0x03: // CMP/GE Rm,Rn 0011nnnnmmmm0011
case 0x06: // CMP/HI Rm,Rn 0011nnnnmmmm0110
case 0x07: // CMP/GT Rm,Rn 0011nnnnmmmm0111
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
tmp3 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
emith_bic_r_imm(sr, T);
emith_cmp_r_r(tmp2, tmp3);
switch (op & 0x07)
{
case 0x00: // CMP/EQ
emit_or_t_if_eq(sr);
break;
case 0x02: // CMP/HS
EMITH_SJMP_START(DCOND_LO);
emith_or_r_imm_c(DCOND_HS, sr, T);
EMITH_SJMP_END(DCOND_LO);
break;
case 0x03: // CMP/GE
EMITH_SJMP_START(DCOND_LT);
emith_or_r_imm_c(DCOND_GE, sr, T);
EMITH_SJMP_END(DCOND_LT);
break;
case 0x06: // CMP/HI
EMITH_SJMP_START(DCOND_LS);
emith_or_r_imm_c(DCOND_HI, sr, T);
EMITH_SJMP_END(DCOND_LS);
break;
case 0x07: // CMP/GT
EMITH_SJMP_START(DCOND_LE);
emith_or_r_imm_c(DCOND_GT, sr, T);
EMITH_SJMP_END(DCOND_LE);
break;
}
goto end_op;
case 0x04: // DIV1 Rm,Rn 0011nnnnmmmm0100
// Q1 = carry(Rn = (Rn << 1) | T)
// if Q ^ M
// Q2 = carry(Rn += Rm)
// else
// Q2 = carry(Rn -= Rm)
// Q = M ^ Q1 ^ Q2
// T = (Q == M) = !(Q ^ M) = !(Q1 ^ Q2)
tmp3 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_tpop_carry(sr, 0);
emith_adcf_r_r_r(tmp2, tmp, tmp);
emith_tpush_carry(sr, 0); // keep Q1 in T for now
tmp4 = rcache_get_tmp();
emith_and_r_r_imm(tmp4, sr, M);
emith_eor_r_r_lsr(sr, tmp4, M_SHIFT - Q_SHIFT); // Q ^= M
rcache_free_tmp(tmp4);
// add or sub, invert T if carry to get Q1 ^ Q2
// in: (Q ^ M) passed in Q, Q1 in T
emith_sh2_div1_step(tmp2, tmp3, sr);
emith_bic_r_imm(sr, Q);
emith_tst_r_imm(sr, M);
EMITH_SJMP_START(DCOND_EQ);
emith_or_r_imm_c(DCOND_NE, sr, Q); // Q = M
EMITH_SJMP_END(DCOND_EQ);
emith_tst_r_imm(sr, T);
EMITH_SJMP_START(DCOND_EQ);
emith_eor_r_imm_c(DCOND_NE, sr, Q); // Q = M ^ Q1 ^ Q2
EMITH_SJMP_END(DCOND_EQ);
emith_eor_r_imm(sr, T); // T = !(Q1 ^ Q2)
goto end_op;
case 0x05: // DMULU.L Rm,Rn 0011nnnnmmmm0101
tmp = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp3 = rcache_get_reg(SHR_MACL, RC_GR_WRITE, NULL);
tmp4 = rcache_get_reg(SHR_MACH, RC_GR_WRITE, NULL);
emith_mul_u64(tmp3, tmp4, tmp, tmp2);
goto end_op;
case 0x08: // SUB Rm,Rn 0011nnnnmmmm1000
#if PROPAGATE_CONSTANTS
if (GET_Rn() == GET_Rm()) {
gconst_new(GET_Rn(), 0);
goto end_op;
}
#endif
case 0x0c: // ADD Rm,Rn 0011nnnnmmmm1100
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
if (op & 4) {
emith_add_r_r_r(tmp, tmp3, tmp2);
} else
emith_sub_r_r_r(tmp, tmp3, tmp2);
goto end_op;
case 0x0a: // SUBC Rm,Rn 0011nnnnmmmm1010
case 0x0e: // ADDC Rm,Rn 0011nnnnmmmm1110
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
if (op & 4) { // adc
emith_tpop_carry(sr, 0);
emith_adcf_r_r_r(tmp, tmp3, tmp2);
emith_tpush_carry(sr, 0);
} else {
emith_tpop_carry(sr, 1);
emith_sbcf_r_r_r(tmp, tmp3, tmp2);
emith_tpush_carry(sr, 1);
}
goto end_op;
case 0x0b: // SUBV Rm,Rn 0011nnnnmmmm1011
case 0x0f: // ADDV Rm,Rn 0011nnnnmmmm1111
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_bic_r_imm(sr, T);
if (op & 4) {
emith_addf_r_r_r(tmp, tmp3, tmp2);
} else
emith_subf_r_r_r(tmp, tmp3, tmp2);
EMITH_SJMP_START(DCOND_VC);
emith_or_r_imm_c(DCOND_VS, sr, T);
EMITH_SJMP_END(DCOND_VC);
goto end_op;
case 0x0d: // DMULS.L Rm,Rn 0011nnnnmmmm1101
tmp = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp3 = rcache_get_reg(SHR_MACL, RC_GR_WRITE, NULL);
tmp4 = rcache_get_reg(SHR_MACH, RC_GR_WRITE, NULL);
emith_mul_s64(tmp3, tmp4, tmp, tmp2);
goto end_op;
}
goto default_;
/////////////////////////////////////////////
case 0x04:
switch (op & 0x0f)
{
case 0x00:
switch (GET_Fx())
{
case 0: // SHLL Rn 0100nnnn00000000
case 2: // SHAL Rn 0100nnnn00100000
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp2);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_tpop_carry(sr, 0); // dummy
emith_lslf(tmp, tmp2, 1);
emith_tpush_carry(sr, 0);
goto end_op;
case 1: // DT Rn 0100nnnn00010000
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_bic_r_imm(sr, T);
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp2);
emith_subf_r_r_imm(tmp, tmp2, 1);
emit_or_t_if_eq(sr);
goto end_op;
}
goto default_;
case 0x01:
switch (GET_Fx())
{
case 0: // SHLR Rn 0100nnnn00000001
case 2: // SHAR Rn 0100nnnn00100001
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp2);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_tpop_carry(sr, 0); // dummy
if (op & 0x20) {
emith_asrf(tmp, tmp2, 1);
} else
emith_lsrf(tmp, tmp2, 1);
emith_tpush_carry(sr, 0);
goto end_op;
case 1: // CMP/PZ Rn 0100nnnn00010001
tmp = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_bic_r_imm(sr, T);
emith_cmp_r_imm(tmp, 0);
EMITH_SJMP_START(DCOND_LT);
emith_or_r_imm_c(DCOND_GE, sr, T);
EMITH_SJMP_END(DCOND_LT);
goto end_op;
}
goto default_;
case 0x02:
case 0x03:
switch (op & 0x3f)
{
case 0x02: // STS.L MACH,@-Rn 0100nnnn00000010
tmp = SHR_MACH;
break;
case 0x12: // STS.L MACL,@-Rn 0100nnnn00010010
tmp = SHR_MACL;
break;
case 0x22: // STS.L PR,@-Rn 0100nnnn00100010
tmp = SHR_PR;
break;
case 0x03: // STC.L SR,@-Rn 0100nnnn00000011
tmp = SHR_SR;
break;
case 0x13: // STC.L GBR,@-Rn 0100nnnn00010011
tmp = SHR_GBR;
break;
case 0x23: // STC.L VBR,@-Rn 0100nnnn00100011
tmp = SHR_VBR;
break;
default:
goto default_;
}
tmp3 = rcache_get_reg_arg(1, tmp, &tmp4);
if (tmp == SHR_SR) {
emith_clear_msb(tmp3, tmp4, 22); // reserved bits defined by ISA as 0
} else if (tmp3 != tmp4)
emith_move_r_r(tmp3, tmp4);
emit_memhandler_write_rr(sh2, SHR_TMP, GET_Rn(), 0, 2 | MF_PREDECR);
goto end_op;
case 0x04:
case 0x05:
switch (op & 0x3f)
{
case 0x04: // ROTL Rn 0100nnnn00000100
case 0x05: // ROTR Rn 0100nnnn00000101
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp2);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_tpop_carry(sr, 0); // dummy
if (op & 1) {
emith_rorf(tmp, tmp2, 1);
} else
emith_rolf(tmp, tmp2, 1);
emith_tpush_carry(sr, 0);
goto end_op;
case 0x24: // ROTCL Rn 0100nnnn00100100
case 0x25: // ROTCR Rn 0100nnnn00100101
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, NULL);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_tpop_carry(sr, 0);
if (op & 1) {
emith_rorcf(tmp);
} else
emith_rolcf(tmp);
emith_tpush_carry(sr, 0);
goto end_op;
case 0x15: // CMP/PL Rn 0100nnnn00010101
tmp = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_bic_r_imm(sr, T);
emith_cmp_r_imm(tmp, 0);
EMITH_SJMP_START(DCOND_LE);
emith_or_r_imm_c(DCOND_GT, sr, T);
EMITH_SJMP_END(DCOND_LE);
goto end_op;
}
goto default_;
case 0x06:
case 0x07:
switch (op & 0x3f)
{
case 0x06: // LDS.L @Rm+,MACH 0100mmmm00000110
tmp = SHR_MACH;
break;
case 0x16: // LDS.L @Rm+,MACL 0100mmmm00010110
tmp = SHR_MACL;
break;
case 0x26: // LDS.L @Rm+,PR 0100mmmm00100110
tmp = SHR_PR;
break;
case 0x07: // LDC.L @Rm+,SR 0100mmmm00000111
tmp = SHR_SR;
break;
case 0x17: // LDC.L @Rm+,GBR 0100mmmm00010111
tmp = SHR_GBR;
break;
case 0x27: // LDC.L @Rm+,VBR 0100mmmm00100111
tmp = SHR_VBR;
break;
default:
goto default_;
}
if (tmp == SHR_SR) {
tmp2 = emit_memhandler_read_rr(sh2, SHR_TMP, GET_Rn(), 0, 2 | MF_POSTINCR);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_write_sr(sr, tmp2);
rcache_free_tmp(tmp2);
drcf.test_irq = 1;
} else
emit_memhandler_read_rr(sh2, tmp, GET_Rn(), 0, 2 | MF_POSTINCR);
goto end_op;
case 0x08:
case 0x09:
switch (GET_Fx())
{
case 0: // SHLL2 Rn 0100nnnn00001000
// SHLR2 Rn 0100nnnn00001001
tmp = 2;
break;
case 1: // SHLL8 Rn 0100nnnn00011000
// SHLR8 Rn 0100nnnn00011001
tmp = 8;
break;
case 2: // SHLL16 Rn 0100nnnn00101000
// SHLR16 Rn 0100nnnn00101001
tmp = 16;
break;
default:
goto default_;
}
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
if (op & 1) {
emith_lsr(tmp2, tmp3, tmp);
} else
emith_lsl(tmp2, tmp3, tmp);
goto end_op;
case 0x0a:
switch (GET_Fx())
{
case 0: // LDS Rm,MACH 0100mmmm00001010
tmp2 = SHR_MACH;
break;
case 1: // LDS Rm,MACL 0100mmmm00011010
tmp2 = SHR_MACL;
break;
case 2: // LDS Rm,PR 0100mmmm00101010
tmp2 = SHR_PR;
break;
default:
goto default_;
}
emit_move_r_r(tmp2, GET_Rn());
goto end_op;
case 0x0b:
switch (GET_Fx())
{
case 1: // TAS.B @Rn 0100nnnn00011011
// XXX: is TAS working on 32X?
rcache_get_reg_arg(0, GET_Rn(), NULL);
tmp = emit_memhandler_read(0);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_bic_r_imm(sr, T);
emith_cmp_r_imm(tmp, 0);
emit_or_t_if_eq(sr);
emith_or_r_imm(tmp, 0x80);
tmp2 = rcache_get_tmp_arg(1); // assuming it differs to tmp
emith_move_r_r(tmp2, tmp);
rcache_free_tmp(tmp);
rcache_get_reg_arg(0, GET_Rn(), NULL);
emit_memhandler_write(0);
break;
default:
goto default_;
}
goto end_op;
case 0x0e:
switch (GET_Fx())
{
case 0: // LDC Rm,SR 0100mmmm00001110
tmp2 = SHR_SR;
break;
case 1: // LDC Rm,GBR 0100mmmm00011110
tmp2 = SHR_GBR;
break;
case 2: // LDC Rm,VBR 0100mmmm00101110
tmp2 = SHR_VBR;
break;
default:
goto default_;
}
if (tmp2 == SHR_SR) {
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
tmp = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
emith_write_sr(sr, tmp);
drcf.test_irq = 1;
} else
emit_move_r_r(tmp2, GET_Rn());
goto end_op;
case 0x0f: // MAC.W @Rm+,@Rn+ 0100nnnnmmmm1111
emit_indirect_read_double(sh2, &tmp, &tmp2, GET_Rn(), GET_Rm(), 1);
sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
tmp3 = rcache_get_reg(SHR_MACL, RC_GR_RMW, NULL);
tmp4 = rcache_get_reg(SHR_MACH, RC_GR_RMW, NULL);
emith_sh2_macw(tmp3, tmp4, tmp, tmp2, sr);
rcache_free_tmp(tmp2);
rcache_free_tmp(tmp);
goto end_op;
}
goto default_;
/////////////////////////////////////////////
case 0x05: // MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd
emit_memhandler_read_rr(sh2, GET_Rn(), GET_Rm(), (op & 0x0f) * 4, 2);
goto end_op;
/////////////////////////////////////////////
case 0x06:
switch (op & 0x0f)
{
case 0x00: // MOV.B @Rm,Rn 0110nnnnmmmm0000
case 0x01: // MOV.W @Rm,Rn 0110nnnnmmmm0001
case 0x02: // MOV.L @Rm,Rn 0110nnnnmmmm0010
case 0x04: // MOV.B @Rm+,Rn 0110nnnnmmmm0100
case 0x05: // MOV.W @Rm+,Rn 0110nnnnmmmm0101
case 0x06: // MOV.L @Rm+,Rn 0110nnnnmmmm0110
tmp = ((op & 7) >= 4 && GET_Rn() != GET_Rm()) ? MF_POSTINCR : 0;
emit_memhandler_read_rr(sh2, GET_Rn(), GET_Rm(), 0, (op & 3) | tmp);
goto end_op;
case 0x03: // MOV Rm,Rn 0110nnnnmmmm0011
emit_move_r_r(GET_Rn(), GET_Rm());
goto end_op;
case 0x07 ... 0x0f:
tmp = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_WRITE, NULL);
switch (op & 0x0f)
{
case 0x07: // NOT Rm,Rn 0110nnnnmmmm0111
emith_mvn_r_r(tmp2, tmp);
break;
case 0x08: // SWAP.B Rm,Rn 0110nnnnmmmm1000
tmp3 = tmp2;
if (tmp == tmp2)
tmp3 = rcache_get_tmp();
tmp4 = rcache_get_tmp();
emith_lsr(tmp3, tmp, 16);
emith_or_r_r_lsl(tmp3, tmp, 24);
emith_and_r_r_imm(tmp4, tmp, 0xff00);
emith_or_r_r_lsl(tmp3, tmp4, 8);
emith_rol(tmp2, tmp3, 16);
rcache_free_tmp(tmp4);
if (tmp == tmp2)
rcache_free_tmp(tmp3);
break;
case 0x09: // SWAP.W Rm,Rn 0110nnnnmmmm1001
emith_rol(tmp2, tmp, 16);
break;
case 0x0a: // NEGC Rm,Rn 0110nnnnmmmm1010
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_tpop_carry(sr, 1);
emith_negcf_r_r(tmp2, tmp);
emith_tpush_carry(sr, 1);
break;
case 0x0b: // NEG Rm,Rn 0110nnnnmmmm1011
emith_neg_r_r(tmp2, tmp);
break;
case 0x0c: // EXTU.B Rm,Rn 0110nnnnmmmm1100
emith_clear_msb(tmp2, tmp, 24);
break;
case 0x0d: // EXTU.W Rm,Rn 0110nnnnmmmm1101
emith_clear_msb(tmp2, tmp, 16);
break;
case 0x0e: // EXTS.B Rm,Rn 0110nnnnmmmm1110
emith_sext(tmp2, tmp, 8);
break;
case 0x0f: // EXTS.W Rm,Rn 0110nnnnmmmm1111
emith_sext(tmp2, tmp, 16);
break;
}
goto end_op;
}
goto default_;
/////////////////////////////////////////////
case 0x07: // ADD #imm,Rn 0111nnnniiiiiiii
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp2);
if (op & 0x80) { // adding negative
emith_sub_r_r_imm(tmp, tmp2, -op & 0xff);
} else
emith_add_r_r_imm(tmp, tmp2, op & 0xff);
goto end_op;
/////////////////////////////////////////////
case 0x08:
switch (op & 0x0f00)
{
case 0x0000: // MOV.B R0,@(disp,Rn) 10000000nnnndddd
case 0x0100: // MOV.W R0,@(disp,Rn) 10000001nnnndddd
tmp = (op & 0x100) >> 8;
emit_memhandler_write_rr(sh2, SHR_R0, GET_Rm(), (op & 0x0f) << tmp, tmp);
goto end_op;
case 0x0400: // MOV.B @(disp,Rm),R0 10000100mmmmdddd
case 0x0500: // MOV.W @(disp,Rm),R0 10000101mmmmdddd
tmp = (op & 0x100) >> 8;
emit_memhandler_read_rr(sh2, SHR_R0, GET_Rm(), (op & 0x0f) << tmp, tmp);
goto end_op;
case 0x0800: // CMP/EQ #imm,R0 10001000iiiiiiii
tmp2 = rcache_get_reg(SHR_R0, RC_GR_READ, NULL);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_bic_r_imm(sr, T);
emith_cmp_r_imm(tmp2, (s8)(op & 0xff));
emit_or_t_if_eq(sr);
goto end_op;
}
goto default_;
/////////////////////////////////////////////
case 0x0c:
switch (op & 0x0f00)
{
case 0x0000: // MOV.B R0,@(disp,GBR) 11000000dddddddd
case 0x0100: // MOV.W R0,@(disp,GBR) 11000001dddddddd
case 0x0200: // MOV.L R0,@(disp,GBR) 11000010dddddddd
tmp = (op & 0x300) >> 8;
emit_memhandler_write_rr(sh2, SHR_R0, SHR_GBR, (op & 0xff) << tmp, tmp);
goto end_op;
case 0x0400: // MOV.B @(disp,GBR),R0 11000100dddddddd
case 0x0500: // MOV.W @(disp,GBR),R0 11000101dddddddd
case 0x0600: // MOV.L @(disp,GBR),R0 11000110dddddddd
tmp = (op & 0x300) >> 8;
emit_memhandler_read_rr(sh2, SHR_R0, SHR_GBR, (op & 0xff) << tmp, tmp);
goto end_op;
case 0x0800: // TST #imm,R0 11001000iiiiiiii
tmp = rcache_get_reg(SHR_R0, RC_GR_READ, NULL);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_bic_r_imm(sr, T);
emith_tst_r_imm(tmp, op & 0xff);
emit_or_t_if_eq(sr);
goto end_op;
case 0x0900: // AND #imm,R0 11001001iiiiiiii
tmp = rcache_get_reg(SHR_R0, RC_GR_RMW, &tmp2);
emith_and_r_r_imm(tmp, tmp2, (op & 0xff));
goto end_op;
case 0x0a00: // XOR #imm,R0 11001010iiiiiiii
if (op & 0xff) {
tmp = rcache_get_reg(SHR_R0, RC_GR_RMW, &tmp2);
emith_eor_r_r_imm(tmp, tmp2, (op & 0xff));
}
goto end_op;
case 0x0b00: // OR #imm,R0 11001011iiiiiiii
if (op & 0xff) {
tmp = rcache_get_reg(SHR_R0, RC_GR_RMW, &tmp2);
emith_or_r_r_imm(tmp, tmp2, (op & 0xff));
}
goto end_op;
case 0x0c00: // TST.B #imm,@(R0,GBR) 11001100iiiiiiii
tmp = emit_indirect_indexed_read(sh2, SHR_TMP, SHR_R0, SHR_GBR, 0);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_bic_r_imm(sr, T);
emith_tst_r_imm(tmp, op & 0xff);
emit_or_t_if_eq(sr);
rcache_free_tmp(tmp);
goto end_op;
case 0x0d00: // AND.B #imm,@(R0,GBR) 11001101iiiiiiii
tmp = emit_indirect_indexed_read(sh2, SHR_TMP, SHR_R0, SHR_GBR, 0);
tmp2 = rcache_get_tmp_arg(1);
emith_and_r_r_imm(tmp2, tmp, (op & 0xff));
goto end_rmw_op;
case 0x0e00: // XOR.B #imm,@(R0,GBR) 11001110iiiiiiii
tmp = emit_indirect_indexed_read(sh2, SHR_TMP, SHR_R0, SHR_GBR, 0);
tmp2 = rcache_get_tmp_arg(1);
emith_eor_r_r_imm(tmp2, tmp, (op & 0xff));
goto end_rmw_op;
case 0x0f00: // OR.B #imm,@(R0,GBR) 11001111iiiiiiii
tmp = emit_indirect_indexed_read(sh2, SHR_TMP, SHR_R0, SHR_GBR, 0);
tmp2 = rcache_get_tmp_arg(1);
emith_or_r_r_imm(tmp2, tmp, (op & 0xff));
end_rmw_op:
rcache_free_tmp(tmp);
emit_indirect_indexed_write(sh2, SHR_TMP, SHR_R0, SHR_GBR, 0);
goto end_op;
}
goto default_;
/////////////////////////////////////////////
case 0x0e: // MOV #imm,Rn 1110nnnniiiiiiii
emit_move_r_imm32(GET_Rn(), (s8)op);
goto end_op;
default:
default_:
if (!(op_flags[i] & OF_B_IN_DS)) {
elprintf_sh2(sh2, EL_ANOMALY,
"drc: illegal op %04x @ %08x", op, pc - 2);
exit(1);
}
}
end_op:
rcache_unlock_all();
cycles += opd->cycles;
if (op_flags[i+1] & OF_DELAY_OP) {
do_host_disasm(tcache_id);
continue;
}
// test irq?
if (drcf.test_irq && !drcf.pending_branch_direct) {
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
FLUSH_CYCLES(sr);
if (!drcf.pending_branch_indirect)
emit_move_r_imm32(SHR_PC, pc);
rcache_flush();
emith_call(sh2_drc_test_irq);
if (pc < end_pc) // mark next insns as entry point for RTE
op_flags[i+1] |= OF_BTARGET;
drcf.test_irq = 0;
}
// branch handling (with/without delay)
if (drcf.pending_branch_direct)
{
struct op_data *opd_b =
(op_flags[i] & OF_DELAY_OP) ? opd-1 : opd;
u32 target_pc = opd_b->imm;
int cond = -1;
void *target = NULL;
int ctaken = 0;
if (OP_ISBRACND(opd_b->op)) {
ctaken = (op_flags[i] & OF_DELAY_OP) ? 1 : 2;
}
cycles += ctaken; // assume branch taken
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
FLUSH_CYCLES(sr);
rcache_clean();
// emit condition test for conditional branch
if (OP_ISBRACND(opd_b->op)) {
cond = (opd_b->op == OP_BRANCH_CF) ? DCOND_EQ : DCOND_NE;
if (delay_dep_fw & BITMASK1(SHR_T))
emith_tst_r_imm(sr, T_save);
else
emith_tst_r_imm(sr, T);
}
// no modification of host status/flags between here and branching!
#if LINK_BRANCHES
v = find_in_array(branch_target_pc, branch_target_count, target_pc);
if (v >= 0)
{
// local branch
if (branch_target_ptr[v]) {
// jumps back can be linked here since host PC is already known
target = branch_target_ptr[v];
} else if (branch_patch_count < MAX_LOCAL_BRANCHES) {
target = tcache_ptr;
branch_patch_pc[branch_patch_count] = target_pc;
branch_patch_ptr[branch_patch_count] = target;
branch_patch_count++;
}
else
dbg(1, "warning: too many local branches");
}
#endif
if (target == NULL)
{
// can't resolve branch locally, make a block exit
emit_move_r_imm32(SHR_PC, target_pc);
rcache_clean();
target = dr_prepare_ext_branch(block->entryp, target_pc, sh2->is_slave, tcache_id);
if (target == NULL)
return NULL;
}
if (cond != -1) {
emith_jump_cond_patchable(cond, target);
}
else {
emith_jump_patchable(target);
rcache_invalidate();
}
// branch not taken, correct cycle count
if (ctaken)
emith_add_r_imm(sr, ctaken << 12);
drcf.pending_branch_direct = 0;
}
else if (drcf.pending_branch_indirect) {
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
FLUSH_CYCLES(sr);
rcache_flush();
emith_jump(sh2_drc_dispatcher);
drcf.pending_branch_indirect = 0;
}
do_host_disasm(tcache_id);
}
// check the last op
if (op_flags[i-1] & OF_DELAY_OP)
opd = &ops[i-2];
else
opd = &ops[i-1];
if (! OP_ISBRAUC(opd->op))
{
void *target;
s32 tmp = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
FLUSH_CYCLES(tmp);
emit_move_r_imm32(SHR_PC, pc);
rcache_flush();
target = dr_prepare_ext_branch(block->entryp, pc, sh2->is_slave, tcache_id);
if (target == NULL)
return NULL;
emith_jump_patchable(target);
}
// link local branches
for (i = 0; i < branch_patch_count; i++) {
void *target;
int t;
t = find_in_array(branch_target_pc, branch_target_count, branch_patch_pc[i]);
target = branch_target_ptr[t];
if (target == NULL) {
// flush pc and go back to dispatcher (this should no longer happen)
dbg(1, "stray branch to %08x %p", branch_patch_pc[i], tcache_ptr);
target = tcache_ptr;
emit_move_r_imm32(SHR_PC, branch_patch_pc[i]);
rcache_flush();
emith_jump(sh2_drc_dispatcher);
}
emith_jump_patch(branch_patch_ptr[i], target);
}
emith_pool_commit(0);
dr_mark_memory(1, block, tcache_id, 0);
tcache_ptrs[tcache_id] = tcache_ptr;
host_instructions_updated(block_entry_ptr, tcache_ptr);
do_host_disasm(tcache_id);
dbg(2, " block #%d,%d -> %p tcache %d/%d, insns %d -> %d %.3f",
tcache_id, blkid_main, tcache_ptr,
tcache_ptr - tcache_bases[tcache_id], tcache_sizes[tcache_id],
insns_compiled, host_insn_count, (float)host_insn_count / insns_compiled);
if ((sh2->pc & 0xc6000000) == 0x02000000) { // ROM
dbg(2, " hash collisions %d/%d", hash_collisions, block_counts[tcache_id]);
Pico32x.emu_flags |= P32XF_DRC_ROM_C;
}
/*
printf("~~~\n");
tcache_dsm_ptrs[tcache_id] = block_entry_ptr;
do_host_disasm(tcache_id);
printf("~~~\n");
*/
#if (DRC_DEBUG)
fflush(stdout);
#endif
return block_entry_ptr;
}
static void sh2_generate_utils(void)
{
int arg0, arg1, arg2, arg3, sr, tmp;
host_arg2reg(arg0, 0);
host_arg2reg(arg1, 1);
host_arg2reg(arg2, 2);
host_arg2reg(arg3, 3);
emith_move_r_r(arg0, arg0); // nop
emith_move_r_r(arg1, arg1); // nop
emith_move_r_r(arg2, arg2); // nop
emith_move_r_r(arg3, arg3); // nop
// sh2_drc_write8(u32 a, u32 d)
sh2_drc_write8 = (void *)tcache_ptr;
emith_ctx_read_ptr(arg2, offsetof(SH2, write8_tab));
emith_sh2_wcall(arg0, arg1, arg2, arg3);
// sh2_drc_write16(u32 a, u32 d)
sh2_drc_write16 = (void *)tcache_ptr;
emith_ctx_read_ptr(arg2, offsetof(SH2, write16_tab));
emith_sh2_wcall(arg0, arg1, arg2, arg3);
// sh2_drc_write32(u32 a, u32 d)
sh2_drc_write32 = (void *)tcache_ptr;
emith_ctx_read_ptr(arg2, offsetof(SH2, write32_tab));
emith_sh2_wcall(arg0, arg1, arg2, arg3);
// d = sh2_drc_read8(u32 a)
sh2_drc_read8 = (void *)tcache_ptr;
emith_ctx_read_ptr(arg1, offsetof(SH2, read8_map));
emith_sh2_rcall(arg0, arg1, arg2, arg3);
EMITH_SJMP_START(DCOND_CS);
emith_and_r_r_c(DCOND_CC, arg0, arg3);
emith_eor_r_imm_c(DCOND_CC, arg0, 1);
emith_read8_r_r_r_c(DCOND_CC, RET_REG, arg0, arg2);
emith_ret_c(DCOND_CC);
EMITH_SJMP_END(DCOND_CS);
emith_move_r_r_ptr(arg1, CONTEXT_REG);
emith_jump_reg(arg2);
// d = sh2_drc_read16(u32 a)
sh2_drc_read16 = (void *)tcache_ptr;
emith_ctx_read_ptr(arg1, offsetof(SH2, read16_map));
emith_sh2_rcall(arg0, arg1, arg2, arg3);
EMITH_SJMP_START(DCOND_CS);
emith_and_r_r_c(DCOND_CC, arg0, arg3);
emith_read16_r_r_r_c(DCOND_CC, RET_REG, arg0, arg2);
emith_ret_c(DCOND_CC);
EMITH_SJMP_END(DCOND_CS);
emith_move_r_r_ptr(arg1, CONTEXT_REG);
emith_jump_reg(arg2);
// d = sh2_drc_read32(u32 a)
sh2_drc_read32 = (void *)tcache_ptr;
emith_ctx_read_ptr(arg1, offsetof(SH2, read32_map));
emith_sh2_rcall(arg0, arg1, arg2, arg3);
EMITH_SJMP_START(DCOND_CS);
emith_and_r_r_c(DCOND_CC, arg0, arg3);
emith_read_r_r_r_c(DCOND_CC, RET_REG, arg0, arg2);
emith_ror_c(DCOND_CC, RET_REG, RET_REG, 16);
emith_ret_c(DCOND_CC);
EMITH_SJMP_END(DCOND_CS);
emith_move_r_r_ptr(arg1, CONTEXT_REG);
emith_jump_reg(arg2);
// sh2_drc_exit(void)
sh2_drc_exit = (void *)tcache_ptr;
emit_do_static_regs(1, arg2);
emith_sh2_drc_exit();
// sh2_drc_dispatcher(void)
sh2_drc_dispatcher = (void *)tcache_ptr;
emith_ctx_read(arg0, SHR_PC * 4);
#if BRANCH_CACHE
// check if PC is in branch target cache
emith_and_r_r_imm(arg1, arg0, (ARRAY_SIZE(sh2s->branch_cache)-1)*4);
emith_add_r_r_r_lsl_ptr(arg1, CONTEXT_REG, arg1, sizeof(void *) == 8 ? 2 : 1);
emith_read_r_r_offs(arg2, arg1, offsetof(SH2, branch_cache));
emith_cmp_r_r(arg2, arg0);
EMITH_SJMP_START(DCOND_NE);
emith_read_r_r_offs_ptr_c(DCOND_EQ, RET_REG, arg1, offsetof(SH2, branch_cache) + sizeof(void *));
emith_jump_reg_c(DCOND_EQ, RET_REG);
EMITH_SJMP_END(DCOND_NE);
#endif
emith_ctx_read(arg1, offsetof(SH2, is_slave));
emith_add_r_r_ptr_imm(arg2, CONTEXT_REG, offsetof(SH2, drc_tmp));
emith_call(dr_lookup_block);
#if BRANCH_CACHE
// store PC and block entry ptr (in arg0) in branch target cache
emith_tst_r_r_ptr(RET_REG, RET_REG);
EMITH_SJMP_START(DCOND_EQ);
emith_ctx_read_c(DCOND_NE, arg2, SHR_PC * 4);
emith_and_r_r_imm(arg1, arg2, (ARRAY_SIZE(sh2s->branch_cache)-1)*4);
emith_add_r_r_r_lsl_ptr(arg1, CONTEXT_REG, arg1, sizeof(void *) == 8 ? 2 : 1);
emith_write_r_r_offs_c(DCOND_NE, arg2, arg1, offsetof(SH2, branch_cache));
emith_write_r_r_offs_ptr_c(DCOND_NE, RET_REG, arg1, offsetof(SH2, branch_cache) + sizeof(void *));
EMITH_SJMP_END(DCOND_EQ);
#endif
emit_block_entry();
// lookup failed, call sh2_translate()
emith_move_r_r_ptr(arg0, CONTEXT_REG);
emith_ctx_read(arg1, offsetof(SH2, drc_tmp)); // tcache_id
emith_call(sh2_translate);
emit_block_entry();
// XXX: can't translate, fail
emith_call(dr_failure);
// sh2_drc_test_irq(void)
// assumes it's called from main function (may jump to dispatcher)
sh2_drc_test_irq = (void *)tcache_ptr;
emith_ctx_read(arg1, offsetof(SH2, pending_level));
sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
emith_lsr(arg0, sr, I_SHIFT);
emith_and_r_imm(arg0, 0x0f);
emith_cmp_r_r(arg1, arg0); // pending_level > ((sr >> 4) & 0x0f)?
EMITH_SJMP_START(DCOND_GT);
emith_ret_c(DCOND_LE); // nope, return
EMITH_SJMP_END(DCOND_GT);
// adjust SP
tmp = rcache_get_reg(SHR_SP, RC_GR_RMW, NULL);
emith_sub_r_imm(tmp, 4*2);
rcache_clean();
// push SR
tmp = rcache_get_reg_arg(0, SHR_SP, NULL);
emith_add_r_imm(tmp, 4);
tmp = rcache_get_reg_arg(1, SHR_SR, NULL);
emith_clear_msb(tmp, tmp, 22);
emith_move_r_r_ptr(arg2, CONTEXT_REG);
emith_call(p32x_sh2_write32); // XXX: use sh2_drc_write32?
rcache_invalidate();
// push PC
rcache_get_reg_arg(0, SHR_SP, NULL);
emith_ctx_read(arg1, SHR_PC * 4);
emith_move_r_r_ptr(arg2, CONTEXT_REG);
emith_call(p32x_sh2_write32);
rcache_invalidate();
// update I, cycles, do callback
emith_ctx_read(arg1, offsetof(SH2, pending_level));
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_bic_r_imm(sr, I);
emith_or_r_r_lsl(sr, arg1, I_SHIFT);
emith_sub_r_imm(sr, 13 << 12); // at least 13 cycles
rcache_flush();
emith_move_r_r_ptr(arg0, CONTEXT_REG);
emith_call_ctx(offsetof(SH2, irq_callback)); // vector = sh2->irq_callback(sh2, level);
// obtain new PC
emith_lsl(arg0, RET_REG, 2);
emith_ctx_read(arg1, SHR_VBR * 4);
emith_add_r_r(arg0, arg1);
tmp = emit_memhandler_read(2);
emith_ctx_write(tmp, SHR_PC * 4);
#if defined(__i386__) || defined(__x86_64__)
emith_add_r_r_ptr_imm(xSP, xSP, sizeof(void *)); // fix stack
#endif
emith_jump(sh2_drc_dispatcher);
rcache_invalidate();
// sh2_drc_entry(SH2 *sh2)
sh2_drc_entry = (void *)tcache_ptr;
emith_sh2_drc_entry();
emith_move_r_r_ptr(CONTEXT_REG, arg0); // move ctx, arg0
emit_do_static_regs(0, arg2);
emith_call(sh2_drc_test_irq);
emith_jump(sh2_drc_dispatcher);
#ifdef PDB_NET
// debug
#define MAKE_READ_WRAPPER(func) { \
void *tmp = (void *)tcache_ptr; \
emith_push_ret(); \
emith_call(func); \
emith_ctx_read(arg2, offsetof(SH2, pdb_io_csum[0])); \
emith_addf_r_r(arg2, arg0); \
emith_ctx_write(arg2, offsetof(SH2, pdb_io_csum[0])); \
emith_ctx_read(arg2, offsetof(SH2, pdb_io_csum[1])); \
emith_adc_r_imm(arg2, 0x01000000); \
emith_ctx_write(arg2, offsetof(SH2, pdb_io_csum[1])); \
emith_pop_and_ret(); \
func = tmp; \
}
#define MAKE_WRITE_WRAPPER(func) { \
void *tmp = (void *)tcache_ptr; \
emith_ctx_read(arg2, offsetof(SH2, pdb_io_csum[0])); \
emith_addf_r_r(arg2, arg1); \
emith_ctx_write(arg2, offsetof(SH2, pdb_io_csum[0])); \
emith_ctx_read(arg2, offsetof(SH2, pdb_io_csum[1])); \
emith_adc_r_imm(arg2, 0x01000000); \
emith_ctx_write(arg2, offsetof(SH2, pdb_io_csum[1])); \
emith_move_r_r_ptr(arg2, CONTEXT_REG); \
emith_jump(func); \
func = tmp; \
}
MAKE_READ_WRAPPER(sh2_drc_read8);
MAKE_READ_WRAPPER(sh2_drc_read16);
MAKE_READ_WRAPPER(sh2_drc_read32);
MAKE_WRITE_WRAPPER(sh2_drc_write8);
MAKE_WRITE_WRAPPER(sh2_drc_write16);
MAKE_WRITE_WRAPPER(sh2_drc_write32);
#endif
emith_pool_commit(0);
rcache_invalidate();
#if (DRC_DEBUG & 4)
host_dasm_new_symbol(sh2_drc_entry);
host_dasm_new_symbol(sh2_drc_dispatcher);
host_dasm_new_symbol(sh2_drc_exit);
host_dasm_new_symbol(sh2_drc_test_irq);
host_dasm_new_symbol(sh2_drc_write8);
host_dasm_new_symbol(sh2_drc_write16);
host_dasm_new_symbol(sh2_drc_write32);
host_dasm_new_symbol(sh2_drc_read8);
host_dasm_new_symbol(sh2_drc_read16);
host_dasm_new_symbol(sh2_drc_read32);
#endif
}
static void sh2_smc_rm_block_entry(struct block_desc *bd, int tcache_id, u32 nolit, int free)
{
struct block_link *bl;
u32 i;
dbg(2, " killing entry %08x-%08x,%08x-%08x, blkid %d,%d",
bd->addr, bd->addr + bd->size, bd->addr_lit, bd->addr_lit + bd->size_lit,
tcache_id, bd - block_tables[tcache_id]);
if (bd->addr == 0 || bd->entry_count == 0) {
dbg(1, " killing dead block!? %08x", bd->addr);
return;
}
free = free || nolit; // block is invalid if literals are overwritten
// remove from hash table, make incoming links unresolved, revoke outgoing links
for (i = 0; i < bd->entry_count; i++) {
if (bd->active)
rm_from_hashlist(&bd->entryp[i], tcache_id);
for (bl = bd->entryp[i].o_links; bl != NULL; ) {
if (bl->target) {
if (bl->prev)
bl->prev->next = bl->next;
else
bl->target->links = bl->next;
if (bl->next)
bl->next->prev = bl->prev;
bl->target = NULL;
} else if (bd->active)
rm_from_hashlist_unresolved(bl, tcache_id);
bl = bl->o_next;
}
for (bl = bd->entryp[i].links; bl != NULL; ) {
struct block_link *bl_next = bl->next;
dbg(2, "- unlink from %p to pc %08x", bl->jump, bl->target_pc);
emith_jump_patch(bl->jump, sh2_drc_dispatcher);
// update cpu caches since the previous jump target doesn't exist anymore
host_instructions_updated(bl->jump, bl->jump+4);
add_to_hashlist_unresolved(bl, tcache_id);
bl = bl_next;
}
bd->entryp[i].links = NULL;
}
if (bd->active)
dr_mark_memory(-1, bd, tcache_id, nolit);
if (free) {
while ((bl = bd->entryp[0].o_links) != NULL) {
bd->entryp[0].o_links = bl->next;
bl->jump = NULL;
bl->next = blink_free[bl->tcache_id];
blink_free[bl->tcache_id] = bl;
}
bd->entryp[0].o_links = NULL;
rm_from_block_lists(bd);
bd->addr = bd->size = bd->addr_lit = bd->size_lit = 0;
bd->entry_count = 0;
} else {
add_to_block_list(&inactive_blocks[tcache_id], bd);
}
bd->active = 0;
}
static void sh2_smc_rm_blocks(u32 a, int tcache_id, u32 shift)
{
struct block_list **blist, *entry, *next;
u32 mask = ram_sizes[tcache_id] - 1;
u32 wtmask = ~0x20000000; // writethrough area mask
u32 start_addr, end_addr;
u32 start_lit, end_lit;
struct block_desc *block;
#if (DRC_DEBUG & 2)
int removed = 0;
#endif
// need to check cached and writethrough area
a &= wtmask;
blist = &inval_lookup[tcache_id][(a & mask) / INVAL_PAGE_SIZE];
entry = *blist;
while (entry != NULL) {
next = entry->next;
block = entry->block;
start_addr = block->addr & wtmask;
end_addr = start_addr + block->size;
start_lit = block->addr_lit & wtmask;
end_lit = start_lit + block->size_lit;
if ((start_addr <= a && a < end_addr) ||
(start_lit <= a && a < end_lit))
{
dbg(2, "smc remove @%08x", a);
end_addr = (start_lit <= a && block->size_lit ? a : 0);
sh2_smc_rm_block_entry(block, tcache_id, end_addr, 0);
#if (DRC_DEBUG & 2)
removed = 1;
#endif
}
entry = next;
}
#if (DRC_DEBUG & 2)
if (!removed)
dbg(2, "rm_blocks called @%08x, no work?", a);
#endif
#if BRANCH_CACHE
if (tcache_id)
memset32(sh2s[tcache_id-1].branch_cache, -1, sizeof(sh2s[0].branch_cache)/4);
else {
memset32(sh2s[0].branch_cache, -1, sizeof(sh2s[0].branch_cache)/4);
memset32(sh2s[1].branch_cache, -1, sizeof(sh2s[1].branch_cache)/4);
}
#endif
}
void sh2_drc_wcheck_ram(unsigned int a, int val, SH2 *sh2)
{
dbg(2, "%csh2 smc check @%08x v=%d", sh2->is_slave ? 's' : 'm', a, val);
sh2_smc_rm_blocks(a, 0, SH2_DRCBLK_RAM_SHIFT);
}
void sh2_drc_wcheck_da(unsigned int a, int val, SH2 *sh2)
{
int cpuid = sh2->is_slave;
dbg(2, "%csh2 smc check @%08x v=%d", cpuid ? 's' : 'm', a, val);
sh2_smc_rm_blocks(a, 1 + cpuid, SH2_DRCBLK_DA_SHIFT);
}
int sh2_execute_drc(SH2 *sh2c, int cycles)
{
int ret_cycles;
// cycles are kept in SHR_SR unused bits (upper 20)
// bit11 contains T saved for delay slot
// others are usual SH2 flags
sh2c->sr &= 0x3f3;
sh2c->sr |= cycles << 12;
sh2_drc_entry(sh2c);
// TODO: irq cycles
ret_cycles = (signed int)sh2c->sr >> 12;
if (ret_cycles > 0)
dbg(1, "warning: drc returned with cycles: %d", ret_cycles);
sh2c->sr &= 0x3f3;
return ret_cycles;
}
static void block_stats(void)
{
#if (DRC_DEBUG & 2)
int c, b, i;
long total = 0;
printf("block stats:\n");
for (b = 0; b < ARRAY_SIZE(block_tables); b++) {
for (i = 0; i < block_counts[b]; i++)
if (block_tables[b][i].addr != 0)
total += block_tables[b][i].refcount;
for (i = block_limit[b]; i < block_max_counts[b]; i++)
if (block_tables[b][i].addr != 0)
total += block_tables[b][i].refcount;
}
printf("total: %ld\n",total);
for (c = 0; c < 20; c++) {
struct block_desc *blk, *maxb = NULL;
int max = 0;
for (b = 0; b < ARRAY_SIZE(block_tables); b++) {
for (i = 0; i < block_counts[b]; i++) {
blk = &block_tables[b][i];
if (blk->addr != 0 && blk->refcount > max) {
max = blk->refcount;
maxb = blk;
}
}
for (i = block_limit[b]; i < block_max_counts[b]; i++) {
blk = &block_tables[b][i];
if (blk->addr != 0 && blk->refcount > max) {
max = blk->refcount;
maxb = blk;
}
}
}
if (maxb == NULL)
break;
printf("%08x %p %9d %2.3f%%\n", maxb->addr, maxb->tcache_ptr, maxb->refcount,
(double)maxb->refcount / total * 100.0);
maxb->refcount = 0;
}
for (b = 0; b < ARRAY_SIZE(block_tables); b++) {
for (i = 0; i < block_counts[b]; i++)
block_tables[b][i].refcount = 0;
for (i = block_limit[b]; i < block_max_counts[b]; i++)
block_tables[b][i].refcount = 0;
}
#endif
}
void entry_stats(void)
{
#if (DRC_DEBUG & 32)
int c, b, i, j;
long total = 0;
printf("block entry stats:\n");
for (b = 0; b < ARRAY_SIZE(block_tables); b++) {
for (i = 0; i < block_counts[b]; i++)
for (j = 0; j < block_tables[b][i].entry_count; j++)
total += block_tables[b][i].entryp[j].entry_count;
for (i = block_limit[b]; i < block_max_counts[b]; i++)
for (j = 0; j < block_tables[b][i].entry_count; j++)
total += block_tables[b][i].entryp[j].entry_count;
}
printf("total: %ld\n",total);
for (c = 0; c < 20; c++) {
struct block_desc *blk;
struct block_entry *maxb = NULL;
int max = 0;
for (b = 0; b < ARRAY_SIZE(block_tables); b++) {
for (i = 0; i < block_counts[b]; i++) {
blk = &block_tables[b][i];
for (j = 0; j < blk->entry_count; j++)
if (blk->entryp[j].entry_count > max) {
max = blk->entryp[j].entry_count;
maxb = &blk->entryp[j];
}
}
for (i = block_limit[b]; i < block_max_counts[b]; i++) {
blk = &block_tables[b][i];
for (j = 0; j < blk->entry_count; j++)
if (blk->entryp[j].entry_count > max) {
max = blk->entryp[j].entry_count;
maxb = &blk->entryp[j];
}
}
}
if (maxb == NULL)
break;
printf("%08x %p %9d %2.3f%%\n", maxb->pc, maxb->tcache_ptr, maxb->entry_count,
(double)100 * maxb->entry_count / total);
maxb->entry_count = 0;
}
for (b = 0; b < ARRAY_SIZE(block_tables); b++) {
for (i = 0; i < block_counts[b]; i++)
for (j = 0; j < block_tables[b][i].entry_count; j++)
block_tables[b][i].entryp[j].entry_count = 0;
for (i = block_limit[b]; i < block_max_counts[b]; i++)
for (j = 0; j < block_tables[b][i].entry_count; j++)
block_tables[b][i].entryp[j].entry_count = 0;
}
#endif
}
static void backtrace(void)
{
#if (DRC_DEBUG & 1024)
int i;
printf("backtrace master:\n");
for (i = 0; i < ARRAY_SIZE(csh2[0]); i++)
SH2_DUMP(&csh2[0][i], "bt msh2");
printf("backtrace slave:\n");
for (i = 0; i < ARRAY_SIZE(csh2[1]); i++)
SH2_DUMP(&csh2[1][i], "bt ssh2");
#endif
}
static void state_dump(void)
{
#if (DRC_DEBUG & 2048)
int i;
SH2_DUMP(&sh2s[0], "master");
printf("VBR msh2: %x\n", sh2s[0].vbr);
for (i = 0; i < 0x60; i++) {
printf("%08x ",p32x_sh2_read32(sh2s[0].vbr + i*4, &sh2s[0]));
if ((i+1) % 8 == 0) printf("\n");
}
printf("stack msh2: %x\n", sh2s[0].r[15]);
for (i = -0x30; i < 0x30; i++) {
printf("%08x ",p32x_sh2_read32(sh2s[0].r[15] + i*4, &sh2s[0]));
if ((i+1) % 8 == 0) printf("\n");
}
printf("branch cache master:\n");
for (i = 0; i < ARRAY_SIZE(sh2s[0].branch_cache); i++) {
printf("%08x ",sh2s[0].branch_cache[i].pc);
if ((i+1) % 8 == 0) printf("\n");
}
SH2_DUMP(&sh2s[1], "slave");
printf("VBR ssh2: %x\n", sh2s[1].vbr);
for (i = 0; i < 0x60; i++) {
printf("%08x ",p32x_sh2_read32(sh2s[1].vbr + i*4, &sh2s[1]));
if ((i+1) % 8 == 0) printf("\n");
}
printf("stack ssh2: %x\n", sh2s[1].r[15]);
for (i = -0x30; i < 0x30; i++) {
printf("%08x ",p32x_sh2_read32(sh2s[1].r[15] + i*4, &sh2s[1]));
if ((i+1) % 8 == 0) printf("\n");
}
printf("branch cache slave:\n");
for (i = 0; i < ARRAY_SIZE(sh2s[1].branch_cache); i++) {
printf("%08x ",sh2s[1].branch_cache[i].pc);
if ((i+1) % 8 == 0) printf("\n");
}
#endif
}
void sh2_drc_flush_all(void)
{
backtrace();
state_dump();
block_stats();
entry_stats();
flush_tcache(0);
flush_tcache(1);
flush_tcache(2);
Pico32x.emu_flags &= ~P32XF_DRC_ROM_C;
}
void sh2_drc_mem_setup(SH2 *sh2)
{
// fill the convenience pointers
sh2->p_bios = sh2->is_slave ? Pico32xMem->sh2_rom_s.w : Pico32xMem->sh2_rom_m.w;
sh2->p_da = sh2->data_array;
sh2->p_sdram = Pico32xMem->sdram;
sh2->p_rom = Pico.rom;
// sh2->p_dram filled in dram bank switching
sh2->p_drcblk_da = Pico32xMem->drcblk_da[!!sh2->is_slave];
sh2->p_drcblk_ram = Pico32xMem->drcblk_ram;
}
void sh2_drc_frame(void)
{
}
int sh2_drc_init(SH2 *sh2)
{
int i;
if (block_tables[0] == NULL)
{
for (i = 0; i < TCACHE_BUFFERS; i++) {
block_tables[i] = calloc(block_max_counts[i], sizeof(*block_tables[0]));
if (block_tables[i] == NULL)
goto fail;
// max 2 block links (exits) per block
block_link_pool[i] = calloc(block_link_pool_max_counts[i],
sizeof(*block_link_pool[0]));
if (block_link_pool[i] == NULL)
goto fail;
inval_lookup[i] = calloc(ram_sizes[i] / INVAL_PAGE_SIZE,
sizeof(inval_lookup[0]));
if (inval_lookup[i] == NULL)
goto fail;
hash_tables[i] = calloc(hash_table_sizes[i], sizeof(*hash_tables[0]));
if (hash_tables[i] == NULL)
goto fail;
unresolved_links[i] = calloc(hash_table_sizes[i], sizeof(*unresolved_links[0]));
if (unresolved_links[i] == NULL)
goto fail;
}
memset(block_counts, 0, sizeof(block_counts));
for (i = 0; i < ARRAY_SIZE(block_counts); i++) {
block_limit[i] = block_max_counts[i] - 1;
}
memset(block_link_pool_counts, 0, sizeof(block_link_pool_counts));
for (i = 0; i < ARRAY_SIZE(blink_free); i++) {
blink_free[i] = NULL;
}
drc_cmn_init();
rcache_init();
tcache_ptr = tcache;
sh2_generate_utils();
host_instructions_updated(tcache, tcache_ptr);
tcache_bases[0] = tcache_ptrs[0] = tcache_ptr;
tcache_limit[0] = tcache_bases[0] + tcache_sizes[0] - (tcache_ptr-tcache);
for (i = 1; i < ARRAY_SIZE(tcache_bases); i++) {
tcache_bases[i] = tcache_ptrs[i] = tcache_bases[i - 1] + tcache_sizes[i - 1];
tcache_limit[i] = tcache_bases[i] + tcache_sizes[i];
}
#if (DRC_DEBUG & 4)
for (i = 0; i < ARRAY_SIZE(block_tables); i++)
tcache_dsm_ptrs[i] = tcache_bases[i];
// disasm the utils
tcache_dsm_ptrs[0] = tcache;
do_host_disasm(0);
fflush(stdout);
#endif
#if (DRC_DEBUG & 1)
hash_collisions = 0;
#endif
}
memset(sh2->branch_cache, -1, sizeof(sh2->branch_cache));
return 0;
fail:
sh2_drc_finish(sh2);
return -1;
}
void sh2_drc_finish(SH2 *sh2)
{
struct block_list *bl, *bn;
int i;
if (block_tables[0] == NULL)
return;
sh2_drc_flush_all();
for (i = 0; i < TCACHE_BUFFERS; i++) {
#if (DRC_DEBUG & 4)
printf("~~~ tcache %d\n", i);
#if 0
tcache_dsm_ptrs[i] = tcache_bases[i];
tcache_ptr = tcache_ptrs[i];
do_host_disasm(i);
if (tcache_limit[i] < tcache_bases[i] + tcache_sizes[i]) {
tcache_dsm_ptrs[i] = tcache_limit[i];
tcache_ptr = tcache_bases[i] + tcache_sizes[i];
do_host_disasm(i);
}
#endif
printf("max links: %d\n", block_link_pool_counts[i]);
#endif
if (block_tables[i] != NULL)
free(block_tables[i]);
block_tables[i] = NULL;
if (block_link_pool[i] != NULL)
free(block_link_pool[i]);
block_link_pool[i] = NULL;
blink_free[i] = NULL;
if (inval_lookup[i] != NULL)
free(inval_lookup[i]);
inval_lookup[i] = NULL;
if (hash_tables[i] != NULL) {
free(hash_tables[i]);
hash_tables[i] = NULL;
}
}
for (bl = blist_free; bl; bl = bn) {
bn = bl->next;
free(bl);
}
blist_free = NULL;
drc_cmn_cleanup();
}
#endif /* DRC_SH2 */
static void *dr_get_pc_base(u32 pc, int is_slave)
{
void *ret = NULL;
u32 mask = 0;
if ((pc & ~0x7ff) == 0) {
// BIOS
ret = is_slave ? Pico32xMem->sh2_rom_s.w : Pico32xMem->sh2_rom_m.w;
mask = 0x7ff;
}
else if ((pc & 0xfffff000) == 0xc0000000) {
// data array
ret = sh2s[is_slave].data_array;
mask = 0xfff;
}
else if ((pc & 0xc6000000) == 0x06000000) {
// SDRAM
ret = Pico32xMem->sdram;
mask = 0x03ffff;
}
else if ((pc & 0xc6000000) == 0x02000000) {
// ROM
if ((pc & 0x3fffff) < Pico.romsize)
ret = Pico.rom;
mask = 0x3fffff;
}
if (ret == NULL)
return (void *)-1; // NULL is valid value
return (char *)ret - (pc & ~mask);
}
u16 scan_block(u32 base_pc, int is_slave, u8 *op_flags, u32 *end_pc_out,
u32 *base_literals_out, u32 *end_literals_out)
{
u16 *dr_pc_base;
u32 pc, op, tmp;
u32 end_pc, end_literals = 0;
u32 lowest_literal = 0;
u32 lowest_mova = 0;
struct op_data *opd;
int next_is_delay = 0;
int end_block = 0;
int i, i_end;
u32 crc = 0;
memset(op_flags, 0, sizeof(*op_flags) * BLOCK_INSN_LIMIT);
op_flags[0] |= OF_BTARGET; // block start is always a target
dr_pc_base = dr_get_pc_base(base_pc, is_slave);
// 1st pass: disassemble
for (i = 0, pc = base_pc; ; i++, pc += 2) {
// we need an ops[] entry after the last one initialized,
// so do it before end_block checks
opd = &ops[i];
opd->op = OP_UNHANDLED;
opd->rm = -1;
opd->source = opd->dest = 0;
opd->cycles = 1;
opd->imm = 0;
if (next_is_delay) {
op_flags[i] |= OF_DELAY_OP;
next_is_delay = 0;
}
else if (end_block || i >= BLOCK_INSN_LIMIT - 2)
break;
else if ((lowest_mova && lowest_mova <= pc) ||
(lowest_literal && lowest_literal <= pc))
break; // text area collides with data area
op = FETCH_OP(pc);
switch ((op & 0xf000) >> 12)
{
/////////////////////////////////////////////
case 0x00:
switch (op & 0x0f)
{
case 0x02:
switch (GET_Fx())
{
case 0: // STC SR,Rn 0000nnnn00000010
tmp = SHR_SR;
break;
case 1: // STC GBR,Rn 0000nnnn00010010
tmp = SHR_GBR;
break;
case 2: // STC VBR,Rn 0000nnnn00100010
tmp = SHR_VBR;
break;
default:
goto undefined;
}
opd->op = OP_MOVE;
opd->source = BITMASK1(tmp);
opd->dest = BITMASK1(GET_Rn());
break;
case 0x03:
CHECK_UNHANDLED_BITS(0xd0, undefined);
// BRAF Rm 0000mmmm00100011
// BSRF Rm 0000mmmm00000011
opd->op = OP_BRANCH_RF;
opd->rm = GET_Rn();
opd->source = BITMASK2(SHR_PC, opd->rm);
opd->dest = BITMASK1(SHR_PC);
if (!(op & 0x20))
opd->dest |= BITMASK1(SHR_PR);
opd->cycles = 2;
next_is_delay = 1;
if (!(opd->dest & BITMASK1(SHR_PR)))
end_block = !(op_flags[i+1+next_is_delay] & OF_BTARGET);
else
op_flags[i+1+next_is_delay] |= OF_BTARGET;
break;
case 0x04: // MOV.B Rm,@(R0,Rn) 0000nnnnmmmm0100
case 0x05: // MOV.W Rm,@(R0,Rn) 0000nnnnmmmm0101
case 0x06: // MOV.L Rm,@(R0,Rn) 0000nnnnmmmm0110
opd->source = BITMASK3(GET_Rm(), SHR_R0, GET_Rn());
opd->dest = BITMASK1(SHR_MEM);
break;
case 0x07:
// MUL.L Rm,Rn 0000nnnnmmmm0111
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(SHR_MACL);
opd->cycles = 2;
break;
case 0x08:
CHECK_UNHANDLED_BITS(0xf00, undefined);
switch (GET_Fx())
{
case 0: // CLRT 0000000000001000
opd->op = OP_SETCLRT;
opd->dest = BITMASK1(SHR_T);
opd->imm = 0;
break;
case 1: // SETT 0000000000011000
opd->op = OP_SETCLRT;
opd->dest = BITMASK1(SHR_T);
opd->imm = 1;
break;
case 2: // CLRMAC 0000000000101000
opd->dest = BITMASK3(SHR_T, SHR_MACL, SHR_MACH);
break;
default:
goto undefined;
}
break;
case 0x09:
switch (GET_Fx())
{
case 0: // NOP 0000000000001001
CHECK_UNHANDLED_BITS(0xf00, undefined);
break;
case 1: // DIV0U 0000000000011001
CHECK_UNHANDLED_BITS(0xf00, undefined);
opd->dest = BITMASK2(SHR_SR, SHR_T);
break;
case 2: // MOVT Rn 0000nnnn00101001
opd->source = BITMASK1(SHR_T);
opd->dest = BITMASK1(GET_Rn());
break;
default:
goto undefined;
}
break;
case 0x0a:
switch (GET_Fx())
{
case 0: // STS MACH,Rn 0000nnnn00001010
tmp = SHR_MACH;
break;
case 1: // STS MACL,Rn 0000nnnn00011010
tmp = SHR_MACL;
break;
case 2: // STS PR,Rn 0000nnnn00101010
tmp = SHR_PR;
break;
default:
goto undefined;
}
opd->op = OP_MOVE;
opd->source = BITMASK1(tmp);
opd->dest = BITMASK1(GET_Rn());
break;
case 0x0b:
CHECK_UNHANDLED_BITS(0xf00, undefined);
switch (GET_Fx())
{
case 0: // RTS 0000000000001011
opd->op = OP_BRANCH_R;
opd->rm = SHR_PR;
opd->source = BITMASK1(opd->rm);
opd->dest = BITMASK1(SHR_PC);
opd->cycles = 2;
next_is_delay = 1;
end_block = !(op_flags[i+1+next_is_delay] & OF_BTARGET);
break;
case 1: // SLEEP 0000000000011011
opd->op = OP_SLEEP;
end_block = 1;
break;
case 2: // RTE 0000000000101011
opd->op = OP_RTE;
opd->source = BITMASK1(SHR_SP);
opd->dest = BITMASK3(SHR_SP, SHR_SR, SHR_PC);
opd->cycles = 4;
next_is_delay = 1;
end_block = !(op_flags[i+1+next_is_delay] & OF_BTARGET);
break;
default:
goto undefined;
}
break;
case 0x0c: // MOV.B @(R0,Rm),Rn 0000nnnnmmmm1100
case 0x0d: // MOV.W @(R0,Rm),Rn 0000nnnnmmmm1101
case 0x0e: // MOV.L @(R0,Rm),Rn 0000nnnnmmmm1110
opd->source = BITMASK3(GET_Rm(), SHR_R0, SHR_MEM);
opd->dest = BITMASK1(GET_Rn());
break;
case 0x0f: // MAC.L @Rm+,@Rn+ 0000nnnnmmmm1111
opd->source = BITMASK6(GET_Rm(), GET_Rn(), SHR_SR, SHR_MACL, SHR_MACH, SHR_MEM);
opd->dest = BITMASK4(GET_Rm(), GET_Rn(), SHR_MACL, SHR_MACH);
opd->cycles = 3;
break;
default:
goto undefined;
}
break;
/////////////////////////////////////////////
case 0x01:
// MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(SHR_MEM);
opd->imm = (op & 0x0f) * 4;
break;
/////////////////////////////////////////////
case 0x02:
switch (op & 0x0f)
{
case 0x00: // MOV.B Rm,@Rn 0010nnnnmmmm0000
case 0x01: // MOV.W Rm,@Rn 0010nnnnmmmm0001
case 0x02: // MOV.L Rm,@Rn 0010nnnnmmmm0010
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(SHR_MEM);
break;
case 0x04: // MOV.B Rm,@-Rn 0010nnnnmmmm0100
case 0x05: // MOV.W Rm,@-Rn 0010nnnnmmmm0101
case 0x06: // MOV.L Rm,@-Rn 0010nnnnmmmm0110
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK2(GET_Rn(), SHR_MEM);
break;
case 0x07: // DIV0S Rm,Rn 0010nnnnmmmm0111
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(SHR_SR);
break;
case 0x08: // TST Rm,Rn 0010nnnnmmmm1000
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(SHR_T);
break;
case 0x09: // AND Rm,Rn 0010nnnnmmmm1001
case 0x0a: // XOR Rm,Rn 0010nnnnmmmm1010
case 0x0b: // OR Rm,Rn 0010nnnnmmmm1011
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(GET_Rn());
break;
case 0x0c: // CMP/STR Rm,Rn 0010nnnnmmmm1100
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(SHR_T);
break;
case 0x0d: // XTRCT Rm,Rn 0010nnnnmmmm1101
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(GET_Rn());
break;
case 0x0e: // MULU.W Rm,Rn 0010nnnnmmmm1110
case 0x0f: // MULS.W Rm,Rn 0010nnnnmmmm1111
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(SHR_MACL);
break;
default:
goto undefined;
}
break;
/////////////////////////////////////////////
case 0x03:
switch (op & 0x0f)
{
case 0x00: // CMP/EQ Rm,Rn 0011nnnnmmmm0000
case 0x02: // CMP/HS Rm,Rn 0011nnnnmmmm0010
case 0x03: // CMP/GE Rm,Rn 0011nnnnmmmm0011
case 0x06: // CMP/HI Rm,Rn 0011nnnnmmmm0110
case 0x07: // CMP/GT Rm,Rn 0011nnnnmmmm0111
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(SHR_T);
break;
case 0x04: // DIV1 Rm,Rn 0011nnnnmmmm0100
opd->source = BITMASK3(GET_Rm(), GET_Rn(), SHR_SR);
opd->dest = BITMASK2(GET_Rn(), SHR_SR);
break;
case 0x05: // DMULU.L Rm,Rn 0011nnnnmmmm0101
case 0x0d: // DMULS.L Rm,Rn 0011nnnnmmmm1101
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK2(SHR_MACL, SHR_MACH);
opd->cycles = 2;
break;
case 0x08: // SUB Rm,Rn 0011nnnnmmmm1000
case 0x0c: // ADD Rm,Rn 0011nnnnmmmm1100
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(GET_Rn());
break;
case 0x0a: // SUBC Rm,Rn 0011nnnnmmmm1010
case 0x0e: // ADDC Rm,Rn 0011nnnnmmmm1110
opd->source = BITMASK3(GET_Rm(), GET_Rn(), SHR_T);
opd->dest = BITMASK2(GET_Rn(), SHR_T);
break;
case 0x0b: // SUBV Rm,Rn 0011nnnnmmmm1011
case 0x0f: // ADDV Rm,Rn 0011nnnnmmmm1111
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK2(GET_Rn(), SHR_T);
break;
default:
goto undefined;
}
break;
/////////////////////////////////////////////
case 0x04:
switch (op & 0x0f)
{
case 0x00:
switch (GET_Fx())
{
case 0: // SHLL Rn 0100nnnn00000000
case 2: // SHAL Rn 0100nnnn00100000
opd->source = BITMASK1(GET_Rn());
opd->dest = BITMASK2(GET_Rn(), SHR_T);
break;
case 1: // DT Rn 0100nnnn00010000
opd->source = BITMASK1(GET_Rn());
opd->dest = BITMASK2(GET_Rn(), SHR_T);
break;
default:
goto undefined;
}
break;
case 0x01:
switch (GET_Fx())
{
case 0: // SHLR Rn 0100nnnn00000001
case 2: // SHAR Rn 0100nnnn00100001
opd->source = BITMASK1(GET_Rn());
opd->dest = BITMASK2(GET_Rn(), SHR_T);
break;
case 1: // CMP/PZ Rn 0100nnnn00010001
opd->source = BITMASK1(GET_Rn());
opd->dest = BITMASK1(SHR_T);
break;
default:
goto undefined;
}
break;
case 0x02:
case 0x03:
switch (op & 0x3f)
{
case 0x02: // STS.L MACH,@-Rn 0100nnnn00000010
tmp = SHR_MACH;
break;
case 0x12: // STS.L MACL,@-Rn 0100nnnn00010010
tmp = SHR_MACL;
break;
case 0x22: // STS.L PR,@-Rn 0100nnnn00100010
tmp = SHR_PR;
break;
case 0x03: // STC.L SR,@-Rn 0100nnnn00000011
tmp = SHR_SR;
opd->cycles = 2;
break;
case 0x13: // STC.L GBR,@-Rn 0100nnnn00010011
tmp = SHR_GBR;
opd->cycles = 2;
break;
case 0x23: // STC.L VBR,@-Rn 0100nnnn00100011
tmp = SHR_VBR;
opd->cycles = 2;
break;
default:
goto undefined;
}
opd->source = BITMASK2(GET_Rn(), tmp);
opd->dest = BITMASK2(GET_Rn(), SHR_MEM);
break;
case 0x04:
case 0x05:
switch (op & 0x3f)
{
case 0x04: // ROTL Rn 0100nnnn00000100
case 0x05: // ROTR Rn 0100nnnn00000101
opd->source = BITMASK1(GET_Rn());
opd->dest = BITMASK2(GET_Rn(), SHR_T);
break;
case 0x24: // ROTCL Rn 0100nnnn00100100
case 0x25: // ROTCR Rn 0100nnnn00100101
opd->source = BITMASK2(GET_Rn(), SHR_T);
opd->dest = BITMASK2(GET_Rn(), SHR_T);
break;
case 0x15: // CMP/PL Rn 0100nnnn00010101
opd->source = BITMASK1(GET_Rn());
opd->dest = BITMASK1(SHR_T);
break;
default:
goto undefined;
}
break;
case 0x06:
case 0x07:
switch (op & 0x3f)
{
case 0x06: // LDS.L @Rm+,MACH 0100mmmm00000110
tmp = SHR_MACH;
break;
case 0x16: // LDS.L @Rm+,MACL 0100mmmm00010110
tmp = SHR_MACL;
break;
case 0x26: // LDS.L @Rm+,PR 0100mmmm00100110
tmp = SHR_PR;
break;
case 0x07: // LDC.L @Rm+,SR 0100mmmm00000111
tmp = SHR_SR;
opd->cycles = 3;
break;
case 0x17: // LDC.L @Rm+,GBR 0100mmmm00010111
tmp = SHR_GBR;
opd->cycles = 3;
break;
case 0x27: // LDC.L @Rm+,VBR 0100mmmm00100111
tmp = SHR_VBR;
opd->cycles = 3;
break;
default:
goto undefined;
}
opd->source = BITMASK2(GET_Rn(), SHR_MEM);
opd->dest = BITMASK2(GET_Rn(), tmp);
break;
case 0x08:
case 0x09:
switch (GET_Fx())
{
case 0:
// SHLL2 Rn 0100nnnn00001000
// SHLR2 Rn 0100nnnn00001001
break;
case 1:
// SHLL8 Rn 0100nnnn00011000
// SHLR8 Rn 0100nnnn00011001
break;
case 2:
// SHLL16 Rn 0100nnnn00101000
// SHLR16 Rn 0100nnnn00101001
break;
default:
goto undefined;
}
opd->source = BITMASK1(GET_Rn());
opd->dest = BITMASK1(GET_Rn());
break;
case 0x0a:
switch (GET_Fx())
{
case 0: // LDS Rm,MACH 0100mmmm00001010
tmp = SHR_MACH;
break;
case 1: // LDS Rm,MACL 0100mmmm00011010
tmp = SHR_MACL;
break;
case 2: // LDS Rm,PR 0100mmmm00101010
tmp = SHR_PR;
break;
default:
goto undefined;
}
opd->op = OP_MOVE;
opd->source = BITMASK1(GET_Rn());
opd->dest = BITMASK1(tmp);
break;
case 0x0b:
switch (GET_Fx())
{
case 0: // JSR @Rm 0100mmmm00001011
opd->dest = BITMASK1(SHR_PR);
case 2: // JMP @Rm 0100mmmm00101011
opd->op = OP_BRANCH_R;
opd->rm = GET_Rn();
opd->source = BITMASK1(opd->rm);
opd->dest |= BITMASK1(SHR_PC);
opd->cycles = 2;
next_is_delay = 1;
if (!(opd->dest & BITMASK1(SHR_PR)))
end_block = !(op_flags[i+1+next_is_delay] & OF_BTARGET);
else
op_flags[i+1+next_is_delay] |= OF_BTARGET;
break;
case 1: // TAS.B @Rn 0100nnnn00011011
opd->source = BITMASK2(GET_Rn(), SHR_MEM);
opd->dest = BITMASK2(SHR_T, SHR_MEM);
opd->cycles = 4;
break;
default:
goto undefined;
}
break;
case 0x0e:
switch (GET_Fx())
{
case 0: // LDC Rm,SR 0100mmmm00001110
tmp = SHR_SR;
break;
case 1: // LDC Rm,GBR 0100mmmm00011110
tmp = SHR_GBR;
break;
case 2: // LDC Rm,VBR 0100mmmm00101110
tmp = SHR_VBR;
break;
default:
goto undefined;
}
opd->op = OP_MOVE;
opd->source = BITMASK1(GET_Rn());
opd->dest = BITMASK1(tmp);
break;
case 0x0f:
// MAC.W @Rm+,@Rn+ 0100nnnnmmmm1111
opd->source = BITMASK6(GET_Rm(), GET_Rn(), SHR_SR, SHR_MACL, SHR_MACH, SHR_MEM);
opd->dest = BITMASK4(GET_Rm(), GET_Rn(), SHR_MACL, SHR_MACH);
opd->cycles = 3;
break;
default:
goto undefined;
}
break;
/////////////////////////////////////////////
case 0x05:
// MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd
opd->source = BITMASK2(GET_Rm(), SHR_MEM);
opd->dest = BITMASK1(GET_Rn());
opd->imm = (op & 0x0f) * 4;
break;
/////////////////////////////////////////////
case 0x06:
switch (op & 0x0f)
{
case 0x04: // MOV.B @Rm+,Rn 0110nnnnmmmm0100
case 0x05: // MOV.W @Rm+,Rn 0110nnnnmmmm0101
case 0x06: // MOV.L @Rm+,Rn 0110nnnnmmmm0110
opd->dest = BITMASK2(GET_Rm(), GET_Rn());
opd->source = BITMASK2(GET_Rm(), SHR_MEM);
break;
case 0x00: // MOV.B @Rm,Rn 0110nnnnmmmm0000
case 0x01: // MOV.W @Rm,Rn 0110nnnnmmmm0001
case 0x02: // MOV.L @Rm,Rn 0110nnnnmmmm0010
opd->dest = BITMASK1(GET_Rn());
opd->source = BITMASK2(GET_Rm(), SHR_MEM);
break;
case 0x0a: // NEGC Rm,Rn 0110nnnnmmmm1010
opd->source = BITMASK2(GET_Rm(), SHR_T);
opd->dest = BITMASK2(GET_Rn(), SHR_T);
break;
case 0x03: // MOV Rm,Rn 0110nnnnmmmm0011
opd->op = OP_MOVE;
goto arith_rmrn;
case 0x07: // NOT Rm,Rn 0110nnnnmmmm0111
case 0x08: // SWAP.B Rm,Rn 0110nnnnmmmm1000
case 0x09: // SWAP.W Rm,Rn 0110nnnnmmmm1001
case 0x0b: // NEG Rm,Rn 0110nnnnmmmm1011
case 0x0c: // EXTU.B Rm,Rn 0110nnnnmmmm1100
case 0x0d: // EXTU.W Rm,Rn 0110nnnnmmmm1101
case 0x0e: // EXTS.B Rm,Rn 0110nnnnmmmm1110
case 0x0f: // EXTS.W Rm,Rn 0110nnnnmmmm1111
arith_rmrn:
opd->source = BITMASK1(GET_Rm());
opd->dest = BITMASK1(GET_Rn());
break;
}
break;
/////////////////////////////////////////////
case 0x07:
// ADD #imm,Rn 0111nnnniiiiiiii
opd->source = opd->dest = BITMASK1(GET_Rn());
opd->imm = (s8)op;
break;
/////////////////////////////////////////////
case 0x08:
switch (op & 0x0f00)
{
case 0x0000: // MOV.B R0,@(disp,Rn) 10000000nnnndddd
opd->source = BITMASK2(GET_Rm(), SHR_R0);
opd->dest = BITMASK1(SHR_MEM);
opd->imm = (op & 0x0f);
break;
case 0x0100: // MOV.W R0,@(disp,Rn) 10000001nnnndddd
opd->source = BITMASK2(GET_Rm(), SHR_R0);
opd->dest = BITMASK1(SHR_MEM);
opd->imm = (op & 0x0f) * 2;
break;
case 0x0400: // MOV.B @(disp,Rm),R0 10000100mmmmdddd
opd->source = BITMASK2(GET_Rm(), SHR_MEM);
opd->dest = BITMASK1(SHR_R0);
opd->imm = (op & 0x0f);
break;
case 0x0500: // MOV.W @(disp,Rm),R0 10000101mmmmdddd
opd->source = BITMASK2(GET_Rm(), SHR_MEM);
opd->dest = BITMASK1(SHR_R0);
opd->imm = (op & 0x0f) * 2;
break;
case 0x0800: // CMP/EQ #imm,R0 10001000iiiiiiii
opd->source = BITMASK1(SHR_R0);
opd->dest = BITMASK1(SHR_T);
opd->imm = (s8)op;
break;
case 0x0d00: // BT/S label 10001101dddddddd
case 0x0f00: // BF/S label 10001111dddddddd
next_is_delay = 1;
// fallthrough
case 0x0900: // BT label 10001001dddddddd
case 0x0b00: // BF label 10001011dddddddd
opd->op = (op & 0x0200) ? OP_BRANCH_CF : OP_BRANCH_CT;
opd->source = BITMASK2(SHR_PC, SHR_T);
opd->dest = BITMASK1(SHR_PC);
opd->imm = ((signed int)(op << 24) >> 23);
opd->imm += pc + 4;
if (base_pc <= opd->imm && opd->imm < base_pc + BLOCK_INSN_LIMIT * 2)
op_flags[(opd->imm - base_pc) / 2] |= OF_BTARGET;
break;
default:
goto undefined;
}
break;
/////////////////////////////////////////////
case 0x09:
// MOV.W @(disp,PC),Rn 1001nnnndddddddd
opd->op = OP_LOAD_POOL;
tmp = pc + 2;
if (op_flags[i] & OF_DELAY_OP) {
if (ops[i-1].op == OP_BRANCH)
tmp = ops[i-1].imm;
else if (ops[i-1].op != OP_BRANCH_N)
tmp = 0;
}
opd->source = BITMASK2(SHR_PC, SHR_MEM);
opd->dest = BITMASK1(GET_Rn());
if (tmp) {
opd->imm = tmp + 2 + (op & 0xff) * 2;
if (lowest_literal == 0 || opd->imm < lowest_literal)
lowest_literal = opd->imm;
}
opd->size = 1;
break;
/////////////////////////////////////////////
case 0x0b:
// BSR label 1011dddddddddddd
opd->dest = BITMASK1(SHR_PR);
case 0x0a:
// BRA label 1010dddddddddddd
opd->op = OP_BRANCH;
opd->source = BITMASK1(SHR_PC);
opd->dest |= BITMASK1(SHR_PC);
opd->imm = ((signed int)(op << 20) >> 19);
opd->imm += pc + 4;
opd->cycles = 2;
next_is_delay = 1;
if (!(opd->dest & BITMASK1(SHR_PR))) {
if (base_pc <= opd->imm && opd->imm < base_pc + BLOCK_INSN_LIMIT * 2) {
op_flags[(opd->imm - base_pc) / 2] |= OF_BTARGET;
if (opd->imm <= pc)
end_block = !(op_flags[i+1+next_is_delay] & OF_BTARGET);
} else
end_block = !(op_flags[i+1+next_is_delay] & OF_BTARGET);
} else
op_flags[i+1+next_is_delay] |= OF_BTARGET;
break;
/////////////////////////////////////////////
case 0x0c:
switch (op & 0x0f00)
{
case 0x0000: // MOV.B R0,@(disp,GBR) 11000000dddddddd
case 0x0100: // MOV.W R0,@(disp,GBR) 11000001dddddddd
case 0x0200: // MOV.L R0,@(disp,GBR) 11000010dddddddd
opd->source = BITMASK2(SHR_GBR, SHR_R0);
opd->dest = BITMASK1(SHR_MEM);
opd->size = (op & 0x300) >> 8;
opd->imm = (op & 0xff) << opd->size;
break;
case 0x0400: // MOV.B @(disp,GBR),R0 11000100dddddddd
case 0x0500: // MOV.W @(disp,GBR),R0 11000101dddddddd
case 0x0600: // MOV.L @(disp,GBR),R0 11000110dddddddd
opd->source = BITMASK2(SHR_GBR, SHR_MEM);
opd->dest = BITMASK1(SHR_R0);
opd->size = (op & 0x300) >> 8;
opd->imm = (op & 0xff) << opd->size;
break;
case 0x0300: // TRAPA #imm 11000011iiiiiiii
opd->op = OP_TRAPA;
opd->source = BITMASK3(SHR_SP, SHR_PC, SHR_SR);
opd->dest = BITMASK2(SHR_SP, SHR_PC);
opd->imm = (op & 0xff);
opd->cycles = 8;
op_flags[i+1] |= OF_BTARGET;
break;
case 0x0700: // MOVA @(disp,PC),R0 11000111dddddddd
opd->op = OP_MOVA;
tmp = pc + 2;
if (op_flags[i] & OF_DELAY_OP) {
if (ops[i-1].op == OP_BRANCH)
tmp = ops[i-1].imm;
else if (ops[i-1].op != OP_BRANCH_N)
tmp = 0;
}
opd->dest = BITMASK1(SHR_R0);
if (tmp) {
opd->imm = (tmp + 2 + (op & 0xff) * 4) & ~3;
if (opd->imm >= base_pc) {
if (lowest_mova == 0 || opd->imm < lowest_mova)
lowest_mova = opd->imm;
}
}
break;
case 0x0800: // TST #imm,R0 11001000iiiiiiii
opd->source = BITMASK1(SHR_R0);
opd->dest = BITMASK1(SHR_T);
opd->imm = op & 0xff;
break;
case 0x0900: // AND #imm,R0 11001001iiiiiiii
opd->source = opd->dest = BITMASK1(SHR_R0);
opd->imm = op & 0xff;
break;
case 0x0a00: // XOR #imm,R0 11001010iiiiiiii
opd->source = opd->dest = BITMASK1(SHR_R0);
opd->imm = op & 0xff;
break;
case 0x0b00: // OR #imm,R0 11001011iiiiiiii
opd->source = opd->dest = BITMASK1(SHR_R0);
opd->imm = op & 0xff;
break;
case 0x0c00: // TST.B #imm,@(R0,GBR) 11001100iiiiiiii
opd->source = BITMASK3(SHR_GBR, SHR_R0, SHR_MEM);
opd->dest = BITMASK1(SHR_T);
opd->imm = op & 0xff;
opd->cycles = 3;
break;
case 0x0d00: // AND.B #imm,@(R0,GBR) 11001101iiiiiiii
case 0x0e00: // XOR.B #imm,@(R0,GBR) 11001110iiiiiiii
case 0x0f00: // OR.B #imm,@(R0,GBR) 11001111iiiiiiii
opd->source = BITMASK3(SHR_GBR, SHR_R0, SHR_MEM);
opd->dest = BITMASK1(SHR_MEM);
opd->imm = op & 0xff;
opd->cycles = 3;
break;
default:
goto undefined;
}
break;
/////////////////////////////////////////////
case 0x0d:
// MOV.L @(disp,PC),Rn 1101nnnndddddddd
opd->op = OP_LOAD_POOL;
tmp = pc + 2;
if (op_flags[i] & OF_DELAY_OP) {
if (ops[i-1].op == OP_BRANCH)
tmp = ops[i-1].imm;
else if (ops[i-1].op != OP_BRANCH_N)
tmp = 0;
}
opd->source = BITMASK2(SHR_PC, SHR_MEM);
opd->dest = BITMASK1(GET_Rn());
if (tmp) {
opd->imm = (tmp + 2 + (op & 0xff) * 4) & ~3;
if (lowest_literal == 0 || opd->imm < lowest_literal)
lowest_literal = opd->imm;
}
opd->size = 2;
break;
/////////////////////////////////////////////
case 0x0e:
// MOV #imm,Rn 1110nnnniiiiiiii
opd->dest = BITMASK1(GET_Rn());
opd->imm = (s8)op;
break;
default:
undefined:
opd->op = OP_UNDEFINED;
// an unhandled instruction is probably not code if it's not the 1st insn
if (!(op_flags[i] & OF_DELAY_OP) && pc != base_pc)
goto end;
break;
}
if (op_flags[i] & OF_DELAY_OP) {
switch (opd->op) {
case OP_BRANCH:
case OP_BRANCH_N:
case OP_BRANCH_CT:
case OP_BRANCH_CF:
case OP_BRANCH_R:
case OP_BRANCH_RF:
elprintf(EL_ANOMALY, "%csh2 drc: branch in DS @ %08x",
is_slave ? 's' : 'm', pc);
opd->op = OP_UNDEFINED;
op_flags[i] |= OF_B_IN_DS;
next_is_delay = 0;
break;
}
}
}
end:
i_end = i;
end_pc = pc;
// 2nd pass: some analysis
lowest_literal = end_literals = lowest_mova = 0;
for (i = 0, pc = base_pc; i < i_end; i++, pc += 2) {
opd = &ops[i];
crc += FETCH_OP(pc);
// propagate T (TODO: DIV0U)
if ((opd->op == OP_SETCLRT && !opd->imm) || opd->op == OP_BRANCH_CT)
op_flags[i + 1] |= OF_T_CLEAR;
else if ((opd->op == OP_SETCLRT && opd->imm) || opd->op == OP_BRANCH_CF)
op_flags[i + 1] |= OF_T_SET;
if ((op_flags[i] & OF_BTARGET) || (opd->dest & BITMASK1(SHR_T)))
op_flags[i] &= ~(OF_T_SET | OF_T_CLEAR);
else
op_flags[i + 1] |= op_flags[i] & (OF_T_SET | OF_T_CLEAR);
if ((opd->op == OP_BRANCH_CT && (op_flags[i] & OF_T_CLEAR)) ||
(opd->op == OP_BRANCH_CF && (op_flags[i] & OF_T_SET)))
opd->op = OP_BRANCH_N;
else if ((opd->op == OP_BRANCH_CT && (op_flags[i] & OF_T_SET)) ||
(opd->op == OP_BRANCH_CF && (op_flags[i] & OF_T_CLEAR))) {
opd->op = OP_BRANCH;
if (op_flags[i + 1] & OF_DELAY_OP)
opd->cycles = 2;
else
opd->cycles = 3;
}
// "overscan" detection: unreachable code after unconditional branch
// this can happen if the insn after a forward branch isn't a local target
if (OP_ISBRAUC(opd->op)) {
if (op_flags[i + 1] & OF_DELAY_OP) {
if (i_end > i + 2 && !(op_flags[i + 2] & OF_BTARGET))
i_end = i + 2;
} else {
if (i_end > i + 1 && !(op_flags[i + 1] & OF_BTARGET))
i_end = i + 1;
}
}
// literal pool size detection
if (opd->op == OP_MOVA && opd->imm >= base_pc)
if (lowest_mova == 0 || opd->imm < lowest_mova)
lowest_mova = opd->imm;
if (opd->op == OP_LOAD_POOL) {
if (opd->imm >= base_pc && opd->imm < end_pc + MAX_LITERAL_OFFSET) {
if (end_literals < opd->imm + opd->size * 2)
end_literals = opd->imm + opd->size * 2;
if (lowest_literal == 0 || lowest_literal > opd->imm)
lowest_literal = opd->imm;
if (opd->size == 2) {
// tweak for NFL: treat a 32bit literal as an address and check if it
// points to the literal space. In that case handle it like MOVA.
tmp = FETCH32(opd->imm) & ~0x20000000; // MUST ignore wt bit here
if (tmp >= end_pc && tmp < end_pc + MAX_LITERAL_OFFSET)
if (lowest_mova == 0 || tmp < lowest_mova)
lowest_mova = tmp;
}
}
}
}
end_pc = base_pc + i_end * 2;
// end_literals is used to decide to inline a literal or not
// XXX: need better detection if this actually is used in write
if (lowest_literal >= base_pc) {
if (lowest_literal < end_pc) {
dbg(1, "warning: lowest_literal=%08x < end_pc=%08x", lowest_literal, end_pc);
// TODO: does this always mean end_pc covers data?
}
}
if (lowest_mova >= base_pc) {
if (lowest_mova < end_literals) {
dbg(1, "warning: mova=%08x < end_literals=%08x", lowest_mova, end_literals);
end_literals = lowest_mova;
}
if (lowest_mova < end_pc) {
dbg(1, "warning: mova=%08x < end_pc=%08x", lowest_mova, end_pc);
end_literals = end_pc;
}
}
if (lowest_literal >= end_literals)
lowest_literal = end_literals;
if (lowest_literal && end_literals)
for (pc = lowest_literal; pc < end_literals; pc += 2)
crc += FETCH_OP(pc);
*end_pc_out = end_pc;
if (base_literals_out != NULL)
*base_literals_out = (lowest_literal ?: end_pc);
if (end_literals_out != NULL)
*end_literals_out = (end_literals ?: end_pc);
// crc overflow handling, twice to collect all overflows
crc = (crc & 0xffff) + (crc >> 16);
crc = (crc & 0xffff) + (crc >> 16);
return crc;
}
// vim:shiftwidth=2:ts=2:expandtab