picodrive/pico/32x/pwm.c
2022-12-20 21:34:13 +00:00

362 lines
9 KiB
C

/*
* PicoDrive
* (C) notaz, 2009,2010,2013
*
* This work is licensed under the terms of MAME license.
* See COPYING file in the top-level directory.
*/
#include "../pico_int.h"
static struct {
int cycles;
unsigned mult;
int ptr;
int irq_reload;
int doing_fifo;
int silent;
int irq_timer;
int irq_state;
short current[2];
} pwm;
enum { PWM_IRQ_LOCKED, PWM_IRQ_STOPPED, PWM_IRQ_LOW, PWM_IRQ_HIGH };
void p32x_pwm_ctl_changed(void)
{
int control = Pico32x.regs[0x30 / 2];
int cycles = Pico32x.regs[0x32 / 2];
int pwm_irq_opt = PicoIn.opt & POPT_PWM_IRQ_OPT;
cycles = (cycles - 1) & 0x0fff;
pwm.cycles = cycles;
// supposedly we should stop FIFO when xMd is 0,
// but mars test disagrees
pwm.mult = 0;
if ((control & 0x0f) != 0)
pwm.mult = 0x10000 / cycles;
pwm.irq_timer = (control & 0x0f00) >> 8;
pwm.irq_timer = ((pwm.irq_timer - 1) & 0x0f) + 1;
pwm.irq_reload = pwm.irq_timer;
pwm.irq_state = pwm_irq_opt ? PWM_IRQ_STOPPED: PWM_IRQ_LOCKED;
if (Pico32x.pwm_irq_cnt <= 0)
Pico32x.pwm_irq_cnt = pwm.irq_reload;
}
static void do_pwm_irq(SH2 *sh2, unsigned int m68k_cycles)
{
p32x_trigger_irq(NULL, m68k_cycles, P32XI_PWM);
if (Pico32x.regs[0x30 / 2] & P32XP_RTP) {
p32x_event_schedule(m68k_cycles, P32X_EVENT_PWM, pwm.cycles / 3 + 1);
// note: might recurse
p32x_dreq1_trigger();
}
}
static int convert_sample(unsigned int v)
{
if (v > pwm.cycles)
v = pwm.cycles;
if (v == 0)
return 0;
return v * pwm.mult - 0x10000/2;
}
#define consume_fifo(sh2, m68k_cycles) { \
int cycles_diff = ((m68k_cycles) * 3) - Pico32x.pwm_cycle_p; \
if (cycles_diff >= pwm.cycles) \
consume_fifo_do(sh2, m68k_cycles, cycles_diff); \
}
static void consume_fifo_do(SH2 *sh2, unsigned int m68k_cycles,
int sh2_cycles_diff)
{
struct Pico32xMem *mem = Pico32xMem;
unsigned short *fifo_l = mem->pwm_fifo[0];
unsigned short *fifo_r = mem->pwm_fifo[1];
int sum = 0;
if (pwm.cycles == 0 || pwm.doing_fifo)
return;
elprintf(EL_PWM, "pwm: %u: consume %d/%d, %d,%d ptr %d",
m68k_cycles, sh2_cycles_diff, sh2_cycles_diff / pwm.cycles,
Pico32x.pwm_p[0], Pico32x.pwm_p[1], pwm.ptr);
// this is for recursion from dreq1 writes
pwm.doing_fifo = 1;
while (sh2_cycles_diff >= pwm.cycles)
{
sh2_cycles_diff -= pwm.cycles;
if (Pico32x.pwm_p[0] > 0) {
mem->pwm_index[0] = (mem->pwm_index[0]+1) % 4;
Pico32x.pwm_p[0]--;
pwm.current[0] = convert_sample(fifo_l[mem->pwm_index[0]]);
sum |= (u16)pwm.current[0];
}
if (Pico32x.pwm_p[1] > 0) {
mem->pwm_index[1] = (mem->pwm_index[1]+1) % 4;
Pico32x.pwm_p[1]--;
pwm.current[1] = convert_sample(fifo_r[mem->pwm_index[1]]);
sum |= (u16)pwm.current[1];
}
mem->pwm[pwm.ptr * 2 ] = pwm.current[0];
mem->pwm[pwm.ptr * 2 + 1] = pwm.current[1];
pwm.ptr = (pwm.ptr + 1) & (PWM_BUFF_LEN - 1);
if (--Pico32x.pwm_irq_cnt <= 0) {
Pico32x.pwm_irq_cnt = pwm.irq_reload;
do_pwm_irq(sh2, m68k_cycles);
} else if (Pico32x.pwm_p[1] == 0 && pwm.irq_state >= PWM_IRQ_LOW) {
// buffer underrun. Reduce reload rate if above programmed setting.
if (pwm.irq_reload > pwm.irq_timer)
pwm.irq_reload--;
pwm.irq_state = PWM_IRQ_LOW;
}
}
Pico32x.pwm_cycle_p = m68k_cycles * 3 - sh2_cycles_diff;
pwm.doing_fifo = 0;
if (sum != 0)
pwm.silent = 0;
}
static int p32x_pwm_schedule_(SH2 *sh2, unsigned int m68k_now)
{
unsigned int pwm_now = m68k_now * 3;
int cycles_diff_sh2;
if (pwm.cycles == 0)
return 0;
cycles_diff_sh2 = pwm_now - Pico32x.pwm_cycle_p;
if (cycles_diff_sh2 >= pwm.cycles)
consume_fifo_do(sh2, m68k_now, cycles_diff_sh2);
if (!((Pico32x.sh2irq_mask[0] | Pico32x.sh2irq_mask[1]) & 1))
return 0; // masked by everyone
cycles_diff_sh2 = pwm_now - Pico32x.pwm_cycle_p;
return (Pico32x.pwm_irq_cnt * pwm.cycles
- cycles_diff_sh2) / 3 + 1;
}
void p32x_pwm_schedule(unsigned int m68k_now)
{
int after = p32x_pwm_schedule_(NULL, m68k_now);
if (after != 0)
p32x_event_schedule(m68k_now, P32X_EVENT_PWM, after);
}
void p32x_pwm_schedule_sh2(SH2 *sh2)
{
int after = p32x_pwm_schedule_(sh2, sh2_cycles_done_m68k(sh2));
if (after != 0)
p32x_event_schedule_sh2(sh2, P32X_EVENT_PWM, after);
}
void p32x_pwm_sync_to_sh2(SH2 *sh2)
{
int m68k_cycles = sh2_cycles_done_m68k(sh2);
consume_fifo(sh2, m68k_cycles);
}
void p32x_pwm_irq_event(unsigned int m68k_now)
{
p32x_pwm_schedule(m68k_now);
}
unsigned int p32x_pwm_read16(u32 a, SH2 *sh2, unsigned int m68k_cycles)
{
unsigned int d = 0;
consume_fifo(sh2, m68k_cycles);
a &= 0x0e;
switch (a/2) {
case 0/2: // control
case 2/2: // cycle
d = Pico32x.regs[(0x30 + a) / 2];
break;
case 4/2: // L ch
if (Pico32x.pwm_p[0] == 3)
d |= P32XP_FULL;
else if (Pico32x.pwm_p[0] == 0)
d |= P32XP_EMPTY;
break;
case 6/2: // R ch
case 8/2: // MONO
if (Pico32x.pwm_p[1] == 3)
d |= P32XP_FULL;
else if (Pico32x.pwm_p[1] == 0)
d |= P32XP_EMPTY;
break;
}
elprintf(EL_PWM, "pwm: %u: r16 %02x %04x (p %d %d)",
m68k_cycles, a, d, Pico32x.pwm_p[0], Pico32x.pwm_p[1]);
return d;
}
void p32x_pwm_write16(u32 a, unsigned int d, SH2 *sh2, unsigned int m68k_cycles)
{
unsigned short *fifo;
int idx;
elprintf(EL_PWM, "pwm: %u: w16 %02x %04x (p %d %d)",
m68k_cycles, a & 0x0e, d, Pico32x.pwm_p[0], Pico32x.pwm_p[1]);
consume_fifo(sh2, m68k_cycles);
a &= 0x0e;
switch (a/2) {
case 0/2: // control
// avoiding pops..
if ((Pico32x.regs[0x30 / 2] & 0x0f) == 0)
Pico32xMem->pwm_fifo[0][0] = Pico32xMem->pwm_fifo[1][0] = 0;
Pico32x.regs[0x30 / 2] = d;
p32x_pwm_ctl_changed();
Pico32x.pwm_irq_cnt = pwm.irq_reload; // ?
break;
case 2/2: // cycle
Pico32x.regs[0x32 / 2] = d & 0x0fff;
p32x_pwm_ctl_changed();
break;
case 8/2: // MONO
case 6/2: // R ch
fifo = Pico32xMem->pwm_fifo[1];
idx = Pico32xMem->pwm_index[1];
if (Pico32x.pwm_p[1] < 3) {
if (Pico32x.pwm_p[1] == 2 && pwm.irq_state >= PWM_IRQ_STOPPED) {
// buffer full. If there was no buffer underrun after last fill,
// try increasing reload rate to reduce IRQs
if (pwm.irq_reload < 3 && pwm.irq_state == PWM_IRQ_HIGH)
pwm.irq_reload ++;
pwm.irq_state = PWM_IRQ_HIGH;
}
Pico32x.pwm_p[1]++;
} else {
// buffer overflow. Some roms always fill the complete buffer even if
// reload rate is set below max. Lock reload rate to programmed setting.
pwm.irq_reload = pwm.irq_timer;
pwm.irq_state = PWM_IRQ_LOCKED;
idx = (idx+1) % 4;
Pico32xMem->pwm_index[1] = idx;
}
fifo[(idx+Pico32x.pwm_p[1]) % 4] = (d - 1) & 0x0fff;
if (a != 8) break; // fallthrough if MONO
case 4/2: // L ch
fifo = Pico32xMem->pwm_fifo[0];
idx = Pico32xMem->pwm_index[0];
if (Pico32x.pwm_p[0] < 3)
Pico32x.pwm_p[0]++;
else {
idx = (idx+1) % 4;
Pico32xMem->pwm_index[0] = idx;
}
fifo[(idx+Pico32x.pwm_p[0]) % 4] = (d - 1) & 0x0fff;
break;
}
}
void p32x_pwm_update(s32 *buf32, int length, int stereo)
{
short *pwmb;
int step;
int p = 0;
int xmd;
consume_fifo(NULL, SekCyclesDone());
xmd = Pico32x.regs[0x30 / 2] & 0x0f;
if (xmd == 0 || xmd == 0x06 || xmd == 0x09 || xmd == 0x0f)
goto out; // invalid?
if (pwm.silent)
return;
step = (pwm.ptr << 16) / length;
pwmb = Pico32xMem->pwm;
if (stereo)
{
if (xmd == 0x05) {
// normal
while (length-- > 0) {
*buf32++ += pwmb[0];
*buf32++ += pwmb[1];
p += step;
pwmb += (p >> 16) * 2;
p &= 0xffff;
}
}
else if (xmd == 0x0a) {
// channel swap
while (length-- > 0) {
*buf32++ += pwmb[1];
*buf32++ += pwmb[0];
p += step;
pwmb += (p >> 16) * 2;
p &= 0xffff;
}
}
else {
// mono - LMD, RMD specify dst
if (xmd & 0x06) // src is R
pwmb++;
if (xmd & 0x0c) // dst is R
buf32++;
while (length-- > 0) {
*buf32 += *pwmb;
p += step;
pwmb += (p >> 16) * 2;
p &= 0xffff;
buf32 += 2;
}
}
}
else
{
// mostly unused
while (length-- > 0) {
*buf32++ += pwmb[0];
p += step;
pwmb += (p >> 16) * 2;
p &= 0xffff;
}
}
elprintf(EL_PWM, "pwm_update: pwm.ptr %d, len %d, step %04x, done %d",
pwm.ptr, length, step, (pwmb - Pico32xMem->pwm) / 2);
out:
pwm.ptr = 0;
pwm.silent = pwm.current[0] == 0 && pwm.current[1] == 0;
}
void p32x_pwm_state_loaded(void)
{
int cycles_diff_sh2;
p32x_pwm_ctl_changed();
// for old savestates
cycles_diff_sh2 = Pico.t.m68c_cnt * 3 - Pico32x.pwm_cycle_p;
if (cycles_diff_sh2 >= pwm.cycles || cycles_diff_sh2 < 0) {
Pico32x.pwm_irq_cnt = pwm.irq_reload;
Pico32x.pwm_cycle_p = Pico.t.m68c_cnt * 3;
p32x_pwm_schedule(Pico.t.m68c_cnt);
}
}
// vim:shiftwidth=2:ts=2:expandtab