picodrive/pico/32x/memory.c
2013-06-29 03:39:20 +03:00

1561 lines
40 KiB
C

/*
* PicoDrive
* (C) notaz, 2009,2010
*
* This work is licensed under the terms of MAME license.
* See COPYING file in the top-level directory.
*
* SH2 addr lines:
* iii. .cc. ..xx * // Internal, Cs, x
*
* Register map:
* a15100 F....... R.....EA F.....AC N...VHMP 4000 // Fm Ren nrEs Aden Cart heN V H cMd Pwm
* a15102 ........ ......SM ? 4002 // intS intM
* a15104 ........ ......10 ........ hhhhhhhh 4004 // bk1 bk0 Hint
* a15106 F....... .....SDR UE...... .....SDR 4006 // Full 68S Dma Rv fUll[fb] Empt[fb]
* a15108 (32bit DREQ src) 4008
* a1510c (32bit DREQ dst) 400c
* a15110 llllllll llllll00 4010 // DREQ Len
* a15112 (16bit FIFO reg) 4012
* a15114 ? (16bit VRES clr) 4014
* a15116 ? (16bit Vint clr) 4016
* a15118 ? (16bit Hint clr) 4018
* a1511a ........ .......C (16bit CMD clr) 401a // Cm
* a1511c ? (16bit PWM clr) 401c
* a1511e ? ? 401e
* a15120 (16 bytes comm) 2020
* a15130 (PWM) 2030
*/
#include "../pico_int.h"
#include "../memory.h"
#ifdef DRC_SH2
#include "../../cpu/sh2/compiler.h"
#endif
#if 0
#undef ash2_end_run
#undef SekEndRun
#define ash2_end_run(x)
#define SekEndRun(x)
#endif
static const char str_mars[] = "MARS";
void *p32x_bios_g, *p32x_bios_m, *p32x_bios_s;
struct Pico32xMem *Pico32xMem;
static void bank_switch(int b);
// poll detection
#define POLL_THRESHOLD 6
struct poll_det {
u32 addr, cycles, cyc_max;
int cnt, flag;
};
static struct poll_det m68k_poll, sh2_poll[2];
static int p32x_poll_detect(struct poll_det *pd, u32 a, u32 cycles, int is_vdp)
{
int ret = 0, flag = pd->flag;
if (is_vdp)
flag <<= 3;
if (a - 2 <= pd->addr && pd->addr <= a + 2 && cycles - pd->cycles <= pd->cyc_max) {
pd->cnt++;
if (pd->cnt > POLL_THRESHOLD) {
if (!(Pico32x.emu_flags & flag)) {
elprintf(EL_32X, "%s poll addr %08x, cyc %u",
flag & (P32XF_68KPOLL|P32XF_68KVPOLL) ? "m68k" :
(flag & (P32XF_MSH2POLL|P32XF_MSH2VPOLL) ? "msh2" : "ssh2"), a, cycles - pd->cycles);
ret = 1;
}
Pico32x.emu_flags |= flag;
}
}
else {
pd->cnt = 0;
pd->addr = a;
}
pd->cycles = cycles;
return ret;
}
static int p32x_poll_undetect(struct poll_det *pd, int is_vdp)
{
int ret = 0, flag = pd->flag;
if (is_vdp)
flag <<= 3; // VDP only
else
flag |= flag << 3; // both
if (Pico32x.emu_flags & flag) {
elprintf(EL_32X, "poll %02x -> %02x", Pico32x.emu_flags, Pico32x.emu_flags & ~flag);
ret = 1;
}
Pico32x.emu_flags &= ~flag;
pd->addr = pd->cnt = 0;
return ret;
}
void p32x_poll_event(int cpu_mask, int is_vdp)
{
if (cpu_mask & 1)
p32x_poll_undetect(&sh2_poll[0], is_vdp);
if (cpu_mask & 2)
p32x_poll_undetect(&sh2_poll[1], is_vdp);
}
// SH2 faking
//#define FAKE_SH2
int p32x_csum_faked;
#ifdef FAKE_SH2
static const u16 comm_fakevals[] = {
0x4d5f, 0x4f4b, // M_OK
0x535f, 0x4f4b, // S_OK
0x4D41, 0x5346, // MASF - Brutal Unleashed
0x5331, 0x4d31, // Darxide
0x5332, 0x4d32,
0x5333, 0x4d33,
0x0000, 0x0000, // eq for doom
0x0002, // Mortal Kombat
// 0, // pad
};
static u32 sh2_comm_faker(u32 a)
{
static int f = 0;
if (a == 0x28 && !p32x_csum_faked) {
p32x_csum_faked = 1;
return *(unsigned short *)(Pico.rom + 0x18e);
}
if (f >= sizeof(comm_fakevals) / sizeof(comm_fakevals[0]))
f = 0;
return comm_fakevals[f++];
}
#endif
// DMAC handling
static struct {
unsigned int sar0, dar0, tcr0; // src addr, dst addr, transfer count
unsigned int chcr0; // chan ctl
unsigned int sar1, dar1, tcr1; // same for chan 1
unsigned int chcr1;
int pad[4];
unsigned int dmaor;
} * dmac0;
static void dma_68k2sh2_do(void)
{
unsigned short *dreqlen = &Pico32x.regs[0x10 / 2];
int i;
if (dmac0->tcr0 != *dreqlen)
elprintf(EL_32X|EL_ANOMALY, "tcr0 and dreq len differ: %d != %d", dmac0->tcr0, *dreqlen);
// HACK: assume bus is busy and SH2 is halted
// XXX: use different mechanism for this, not poll det
Pico32x.emu_flags |= P32XF_MSH2POLL; // id ? P32XF_SSH2POLL : P32XF_MSH2POLL;
for (i = 0; i < Pico32x.dmac_ptr && dmac0->tcr0 > 0; i++) {
elprintf(EL_32X, "dmaw [%08x] %04x, left %d", dmac0->dar0, Pico32x.dmac_fifo[i], *dreqlen);
p32x_sh2_write16(dmac0->dar0, Pico32x.dmac_fifo[i], &msh2);
dmac0->dar0 += 2;
dmac0->tcr0--;
(*dreqlen)--;
}
Pico32x.dmac_ptr = 0; // HACK
Pico32x.regs[6 / 2] &= ~P32XS_FULL;
if (*dreqlen == 0)
Pico32x.regs[6 / 2] &= ~P32XS_68S; // transfer complete
if (dmac0->tcr0 == 0) {
dmac0->chcr0 |= 2; // DMA has ended normally
p32x_poll_undetect(&sh2_poll[0], 0);
}
}
// ------------------------------------------------------------------
// 68k regs
static u32 p32x_reg_read16(u32 a)
{
a &= 0x3e;
if (a == 2) // INTM, INTS
return ((Pico32x.sh2irqi[0] & P32XI_CMD) >> 4) | ((Pico32x.sh2irqi[1] & P32XI_CMD) >> 3);
#if 0
if ((a & 0x30) == 0x20)
return sh2_comm_faker(a);
#else
if ((a & 0x30) == 0x20) {
// evil X-Men proto polls in a dbra loop and expects it to expire..
static u32 dr2 = 0;
if (SekDar(2) != dr2)
m68k_poll.cnt = 0;
dr2 = SekDar(2);
if (p32x_poll_detect(&m68k_poll, a, SekCyclesDoneT(), 0)) {
SekSetStop(1);
SekEndTimeslice(16);
}
dr2 = SekDar(2);
}
#endif
if ((a & 0x30) == 0x30)
return p32x_pwm_read16(a);
return Pico32x.regs[a / 2];
}
static void p32x_reg_write8(u32 a, u32 d)
{
u16 *r = Pico32x.regs;
a &= 0x3f;
// for things like bset on comm port
m68k_poll.cnt = 0;
switch (a) {
case 0: // adapter ctl
r[0] = (r[0] & ~P32XS_FM) | ((d << 8) & P32XS_FM);
return;
case 1: // adapter ctl, RES bit writeable
if ((d ^ r[0]) & d & P32XS_nRES)
p32x_reset_sh2s();
r[0] = (r[0] & ~P32XS_nRES) | (d & P32XS_nRES);
return;
case 3: // irq ctl
if ((d & 1) && !(Pico32x.sh2irqi[0] & P32XI_CMD)) {
Pico32x.sh2irqi[0] |= P32XI_CMD;
p32x_update_irls(0);
SekEndRun(16);
}
if ((d & 2) && !(Pico32x.sh2irqi[1] & P32XI_CMD)) {
Pico32x.sh2irqi[1] |= P32XI_CMD;
p32x_update_irls(0);
SekEndRun(16);
}
return;
case 5: // bank
d &= 7;
if (r[4 / 2] != d) {
r[4 / 2] = d;
bank_switch(d);
}
return;
case 7: // DREQ ctl
r[6 / 2] = (r[6 / 2] & P32XS_FULL) | (d & (P32XS_68S|P32XS_DMA|P32XS_RV));
return;
case 0x1b: // TV
r[0x1a / 2] = d;
return;
}
if ((a & 0x30) == 0x20) {
u8 *r8 = (u8 *)r;
r8[a ^ 1] = d;
p32x_poll_undetect(&sh2_poll[0], 0);
p32x_poll_undetect(&sh2_poll[1], 0);
// if some SH2 is busy waiting, it needs to see the result ASAP
if (SekCyclesLeftNoMCD > 32)
SekEndRun(32);
return;
}
}
static void p32x_reg_write16(u32 a, u32 d)
{
u16 *r = Pico32x.regs;
a &= 0x3e;
// for things like bset on comm port
m68k_poll.cnt = 0;
switch (a) {
case 0x00: // adapter ctl
if ((d ^ r[0]) & d & P32XS_nRES)
p32x_reset_sh2s();
r[0] = (r[0] & ~(P32XS_FM|P32XS_nRES)) | (d & (P32XS_FM|P32XS_nRES));
return;
case 0x10: // DREQ len
r[a / 2] = d & ~3;
return;
case 0x12: // FIFO reg
if (!(r[6 / 2] & P32XS_68S)) {
elprintf(EL_32X|EL_ANOMALY, "DREQ FIFO w16 without 68S?");
return;
}
if (Pico32x.dmac_ptr < DMAC_FIFO_LEN) {
Pico32x.dmac_fifo[Pico32x.dmac_ptr++] = d;
if ((Pico32x.dmac_ptr & 3) == 0 && (dmac0->chcr0 & 3) == 1 && (dmac0->dmaor & 1))
dma_68k2sh2_do();
if (Pico32x.dmac_ptr == DMAC_FIFO_LEN)
r[6 / 2] |= P32XS_FULL;
}
break;
}
// DREQ src, dst
if ((a & 0x38) == 0x08) {
r[a / 2] = d;
return;
}
// comm port
else if ((a & 0x30) == 0x20 && r[a / 2] != d) {
r[a / 2] = d;
p32x_poll_undetect(&sh2_poll[0], 0);
p32x_poll_undetect(&sh2_poll[1], 0);
// same as for w8
if (SekCyclesLeftNoMCD > 32)
SekEndRun(32);
return;
}
// PWM
else if ((a & 0x30) == 0x30) {
p32x_pwm_write16(a, d);
return;
}
p32x_reg_write8(a + 1, d);
}
// ------------------------------------------------------------------
// VDP regs
static u32 p32x_vdp_read16(u32 a)
{
a &= 0x0e;
return Pico32x.vdp_regs[a / 2];
}
static void p32x_vdp_write8(u32 a, u32 d)
{
u16 *r = Pico32x.vdp_regs;
a &= 0x0f;
// for FEN checks between writes
sh2_poll[0].cnt = 0;
// TODO: verify what's writeable
switch (a) {
case 0x01:
// priority inversion is handled in palette
if ((r[0] ^ d) & P32XV_PRI)
Pico32x.dirty_pal = 1;
r[0] = (r[0] & P32XV_nPAL) | (d & 0xff);
break;
case 0x03: // shift (for pp mode)
r[2 / 2] = d & 1;
break;
case 0x05: // fill len
r[4 / 2] = d & 0xff;
break;
case 0x0b:
d &= 1;
Pico32x.pending_fb = d;
// if we are blanking and FS bit is changing
if (((r[0x0a/2] & P32XV_VBLK) || (r[0] & P32XV_Mx) == 0) && ((r[0x0a/2] ^ d) & P32XV_FS)) {
r[0x0a/2] ^= P32XV_FS;
Pico32xSwapDRAM(d ^ 1);
elprintf(EL_32X, "VDP FS: %d", r[0x0a/2] & P32XV_FS);
}
break;
}
}
static void p32x_vdp_write16(u32 a, u32 d)
{
a &= 0x0e;
if (a == 6) { // fill start
Pico32x.vdp_regs[6 / 2] = d;
return;
}
if (a == 8) { // fill data
u16 *dram = Pico32xMem->dram[(Pico32x.vdp_regs[0x0a/2] & P32XV_FS) ^ 1];
int len = Pico32x.vdp_regs[4 / 2] + 1;
a = Pico32x.vdp_regs[6 / 2];
while (len--) {
dram[a] = d;
a = (a & 0xff00) | ((a + 1) & 0xff);
}
Pico32x.vdp_regs[6 / 2] = a;
Pico32x.vdp_regs[8 / 2] = d;
return;
}
p32x_vdp_write8(a | 1, d);
}
// ------------------------------------------------------------------
// SH2 regs
static u32 p32x_sh2reg_read16(u32 a, int cpuid)
{
u16 *r = Pico32x.regs;
a &= 0xfe; // ?
switch (a) {
case 0x00: // adapter/irq ctl
return (r[0] & P32XS_FM) | Pico32x.sh2_regs[0] | Pico32x.sh2irq_mask[cpuid];
case 0x04: // H count (often as comm too)
if (p32x_poll_detect(&sh2_poll[cpuid], a, ash2_cycles_done(), 0))
ash2_end_run(8);
return Pico32x.sh2_regs[4 / 2];
case 0x10: // DREQ len
return r[a / 2];
}
// DREQ src, dst
if ((a & 0x38) == 0x08)
return r[a / 2];
// comm port
if ((a & 0x30) == 0x20) {
if (p32x_poll_detect(&sh2_poll[cpuid], a, ash2_cycles_done(), 0))
ash2_end_run(8);
return r[a / 2];
}
if ((a & 0x30) == 0x30) {
sh2_poll[cpuid].cnt = 0;
return p32x_pwm_read16(a);
}
return 0;
}
static void p32x_sh2reg_write8(u32 a, u32 d, int cpuid)
{
a &= 0xff;
switch (a) {
case 0: // FM
Pico32x.regs[0] &= ~P32XS_FM;
Pico32x.regs[0] |= (d << 8) & P32XS_FM;
return;
case 1: //
Pico32x.sh2irq_mask[cpuid] = d & 0x8f;
Pico32x.sh2_regs[0] &= ~0x80;
Pico32x.sh2_regs[0] |= d & 0x80;
p32x_update_irls(1);
return;
case 5: // H count
Pico32x.sh2_regs[4 / 2] = d & 0xff;
p32x_poll_undetect(&sh2_poll[cpuid ^ 1], 0);
return;
}
if ((a & 0x30) == 0x20) {
u8 *r8 = (u8 *)Pico32x.regs;
r8[a ^ 1] = d;
if (p32x_poll_undetect(&m68k_poll, 0))
SekSetStop(0);
p32x_poll_undetect(&sh2_poll[cpuid ^ 1], 0);
return;
}
}
static void p32x_sh2reg_write16(u32 a, u32 d, int cpuid)
{
a &= 0xfe;
// comm
if ((a & 0x30) == 0x20 && Pico32x.regs[a/2] != d) {
Pico32x.regs[a / 2] = d;
if (p32x_poll_undetect(&m68k_poll, 0))
SekSetStop(0);
p32x_poll_undetect(&sh2_poll[cpuid ^ 1], 0);
return;
}
// PWM
else if ((a & 0x30) == 0x30) {
p32x_pwm_write16(a, d);
return;
}
switch (a) {
case 0: // FM
Pico32x.regs[0] &= ~P32XS_FM;
Pico32x.regs[0] |= d & P32XS_FM;
break;
case 0x14: Pico32x.sh2irqs &= ~P32XI_VRES; goto irls;
case 0x16: Pico32x.sh2irqs &= ~P32XI_VINT; goto irls;
case 0x18: Pico32x.sh2irqs &= ~P32XI_HINT; goto irls;
case 0x1a: Pico32x.sh2irqi[cpuid] &= ~P32XI_CMD; goto irls;
case 0x1c:
Pico32x.sh2irqs &= ~P32XI_PWM;
p32x_timers_do(0);
goto irls;
}
p32x_sh2reg_write8(a | 1, d, cpuid);
return;
irls:
p32x_update_irls(1);
}
// ------------------------------------------------------------------
// SH2 internal peripherals
// we keep them in little endian format
static u32 sh2_peripheral_read8(u32 a, int id)
{
u8 *r = (void *)Pico32xMem->sh2_peri_regs[id];
u32 d;
a &= 0x1ff;
d = PREG8(r, a);
elprintf(EL_32X, "%csh2 peri r8 [%08x] %02x @%06x", id ? 's' : 'm', a | ~0x1ff, d, sh2_pc(id));
return d;
}
static u32 sh2_peripheral_read16(u32 a, int id)
{
u16 *r = (void *)Pico32xMem->sh2_peri_regs[id];
u32 d;
a &= 0x1ff;
d = r[(a / 2) ^ 1];
elprintf(EL_32X, "%csh2 peri r16 [%08x] %04x @%06x", id ? 's' : 'm', a | ~0x1ff, d, sh2_pc(id));
return d;
}
static u32 sh2_peripheral_read32(u32 a, int id)
{
u32 d;
a &= 0x1fc;
d = Pico32xMem->sh2_peri_regs[id][a / 4];
elprintf(EL_32X, "%csh2 peri r32 [%08x] %08x @%06x", id ? 's' : 'm', a | ~0x1ff, d, sh2_pc(id));
return d;
}
static int REGPARM(3) sh2_peripheral_write8(u32 a, u32 d, int id)
{
u8 *r = (void *)Pico32xMem->sh2_peri_regs[id];
elprintf(EL_32X, "%csh2 peri w8 [%08x] %02x @%06x", id ? 's' : 'm', a, d, sh2_pc(id));
a &= 0x1ff;
PREG8(r, a) = d;
// X-men SCI hack
if ((a == 2 && (d & 0x20)) || // transmiter enabled
(a == 4 && !(d & 0x80))) { // valid data in TDR
void *oregs = Pico32xMem->sh2_peri_regs[id ^ 1];
if ((PREG8(oregs, 2) & 0x50) == 0x50) { // receiver + irq enabled
int level = PREG8(oregs, 0x60) >> 4;
int vector = PREG8(oregs, 0x63) & 0x7f;
elprintf(EL_32X, "%csh2 SCI recv irq (%d, %d)", (id ^ 1) ? 's' : 'm', level, vector);
sh2_internal_irq(&sh2s[id ^ 1], level, vector);
return 1;
}
}
return 0;
}
static int REGPARM(3) sh2_peripheral_write16(u32 a, u32 d, int id)
{
u16 *r = (void *)Pico32xMem->sh2_peri_regs[id];
elprintf(EL_32X, "%csh2 peri w16 [%08x] %04x @%06x", id ? 's' : 'm', a, d, sh2_pc(id));
a &= 0x1ff;
// evil WDT
if (a == 0x80) {
if ((d & 0xff00) == 0xa500) { // WTCSR
PREG8(r, 0x80) = d;
p32x_timers_recalc();
}
if ((d & 0xff00) == 0x5a00) // WTCNT
PREG8(r, 0x81) = d;
return 0;
}
r[(a / 2) ^ 1] = d;
return 0;
}
static void sh2_peripheral_write32(u32 a, u32 d, int id)
{
u32 *r = Pico32xMem->sh2_peri_regs[id];
elprintf(EL_32X, "%csh2 peri w32 [%08x] %08x @%06x", id ? 's' : 'm', a, d, sh2_pc(id));
a &= 0x1fc;
r[a / 4] = d;
switch (a) {
// division unit (TODO: verify):
case 0x104: // DVDNT: divident L, starts divide
elprintf(EL_32X, "%csh2 divide %08x / %08x", id ? 's' : 'm', d, r[0x100 / 4]);
if (r[0x100 / 4]) {
signed int divisor = r[0x100 / 4];
r[0x118 / 4] = r[0x110 / 4] = (signed int)d % divisor;
r[0x104 / 4] = r[0x11c / 4] = r[0x114 / 4] = (signed int)d / divisor;
}
else
r[0x110 / 4] = r[0x114 / 4] = r[0x118 / 4] = r[0x11c / 4] = 0; // ?
break;
case 0x114:
elprintf(EL_32X, "%csh2 divide %08x%08x / %08x @%08x",
id ? 's' : 'm', r[0x110 / 4], d, r[0x100 / 4], sh2_pc(id));
if (r[0x100 / 4]) {
signed long long divident = (signed long long)r[0x110 / 4] << 32 | d;
signed int divisor = r[0x100 / 4];
// XXX: undocumented mirroring to 0x118,0x11c?
r[0x118 / 4] = r[0x110 / 4] = divident % divisor;
divident /= divisor;
r[0x11c / 4] = r[0x114 / 4] = divident;
divident >>= 31;
if ((unsigned long long)divident + 1 > 1) {
//elprintf(EL_32X, "%csh2 divide overflow! @%08x", id ? 's' : 'm', sh2_pc(id));
r[0x11c / 4] = r[0x114 / 4] = divident > 0 ? 0x7fffffff : 0x80000000; // overflow
}
}
else
r[0x110 / 4] = r[0x114 / 4] = r[0x118 / 4] = r[0x11c / 4] = 0; // ?
break;
}
if ((a == 0x1b0 || a == 0x18c) && (dmac0->chcr0 & 3) == 1 && (dmac0->dmaor & 1)) {
elprintf(EL_32X, "sh2 DMA %08x -> %08x, cnt %d, chcr %04x @%06x",
dmac0->sar0, dmac0->dar0, dmac0->tcr0, dmac0->chcr0, sh2_pc(id));
dmac0->tcr0 &= 0xffffff;
// HACK: assume 68k starts writing soon and end the timeslice
ash2_end_run(16);
// DREQ is only sent after first 4 words are written.
// we do multiple of 4 words to avoid messing up alignment
if (dmac0->sar0 == 0x20004012 && Pico32x.dmac_ptr && (Pico32x.dmac_ptr & 3) == 0) {
elprintf(EL_32X, "68k -> sh2 DMA");
dma_68k2sh2_do();
}
}
}
// ------------------------------------------------------------------
// 32x handlers
// after ADEN
static u32 PicoRead8_32x_on(u32 a)
{
u32 d = 0;
if ((a & 0xffc0) == 0x5100) { // a15100
d = p32x_reg_read16(a);
goto out_16to8;
}
if ((a & 0xfc00) != 0x5000)
return PicoRead8_io(a);
if ((a & 0xfff0) == 0x5180) { // a15180
d = p32x_vdp_read16(a);
goto out_16to8;
}
if ((a & 0xfe00) == 0x5200) { // a15200
d = Pico32xMem->pal[(a & 0x1ff) / 2];
goto out_16to8;
}
if ((a & 0xfffc) == 0x30ec) { // a130ec
d = str_mars[a & 3];
goto out;
}
elprintf(EL_UIO, "m68k unmapped r8 [%06x] @%06x", a, SekPc);
return d;
out_16to8:
if (a & 1)
d &= 0xff;
else
d >>= 8;
out:
elprintf(EL_32X, "m68k 32x r8 [%06x] %02x @%06x", a, d, SekPc);
return d;
}
static u32 PicoRead16_32x_on(u32 a)
{
u32 d = 0;
if ((a & 0xffc0) == 0x5100) { // a15100
d = p32x_reg_read16(a);
goto out;
}
if ((a & 0xfc00) != 0x5000)
return PicoRead16_io(a);
if ((a & 0xfff0) == 0x5180) { // a15180
d = p32x_vdp_read16(a);
goto out;
}
if ((a & 0xfe00) == 0x5200) { // a15200
d = Pico32xMem->pal[(a & 0x1ff) / 2];
goto out;
}
if ((a & 0xfffc) == 0x30ec) { // a130ec
d = !(a & 2) ? ('M'<<8)|'A' : ('R'<<8)|'S';
goto out;
}
elprintf(EL_UIO, "m68k unmapped r16 [%06x] @%06x", a, SekPc);
return d;
out:
elprintf(EL_32X, "m68k 32x r16 [%06x] %04x @%06x", a, d, SekPc);
return d;
}
static void PicoWrite8_32x_on(u32 a, u32 d)
{
if ((a & 0xfc00) == 0x5000)
elprintf(EL_32X, "m68k 32x w8 [%06x] %02x @%06x", a, d & 0xff, SekPc);
if ((a & 0xffc0) == 0x5100) { // a15100
p32x_reg_write8(a, d);
return;
}
if ((a & 0xfc00) != 0x5000) {
PicoWrite8_io(a, d);
return;
}
if ((a & 0xfff0) == 0x5180) { // a15180
p32x_vdp_write8(a, d);
return;
}
// TODO: verify
if ((a & 0xfe00) == 0x5200) { // a15200
elprintf(EL_32X|EL_ANOMALY, "m68k 32x PAL w8 [%06x] %02x @%06x", a, d & 0xff, SekPc);
((u8 *)Pico32xMem->pal)[(a & 0x1ff) ^ 1] = d;
Pico32x.dirty_pal = 1;
return;
}
elprintf(EL_UIO, "m68k unmapped w8 [%06x] %02x @%06x", a, d & 0xff, SekPc);
}
static void PicoWrite16_32x_on(u32 a, u32 d)
{
if ((a & 0xfc00) == 0x5000)
elprintf(EL_32X, "m68k 32x w16 [%06x] %04x @%06x", a, d & 0xffff, SekPc);
if ((a & 0xffc0) == 0x5100) { // a15100
p32x_reg_write16(a, d);
return;
}
if ((a & 0xfc00) != 0x5000) {
PicoWrite16_io(a, d);
return;
}
if ((a & 0xfff0) == 0x5180) { // a15180
p32x_vdp_write16(a, d);
return;
}
if ((a & 0xfe00) == 0x5200) { // a15200
Pico32xMem->pal[(a & 0x1ff) / 2] = d;
Pico32x.dirty_pal = 1;
return;
}
elprintf(EL_UIO, "m68k unmapped w16 [%06x] %04x @%06x", a, d & 0xffff, SekPc);
}
// before ADEN
u32 PicoRead8_32x(u32 a)
{
u32 d = 0;
if ((a & 0xffc0) == 0x5100) { // a15100
// regs are always readable
d = ((u8 *)Pico32x.regs)[(a & 0x3f) ^ 1];
goto out;
}
if ((a & 0xfffc) == 0x30ec) { // a130ec
d = str_mars[a & 3];
goto out;
}
elprintf(EL_UIO, "m68k unmapped r8 [%06x] @%06x", a, SekPc);
return d;
out:
elprintf(EL_32X, "m68k 32x r8 [%06x] %02x @%06x", a, d, SekPc);
return d;
}
u32 PicoRead16_32x(u32 a)
{
u32 d = 0;
if ((a & 0xffc0) == 0x5100) { // a15100
d = Pico32x.regs[(a & 0x3f) / 2];
goto out;
}
if ((a & 0xfffc) == 0x30ec) { // a130ec
d = !(a & 2) ? ('M'<<8)|'A' : ('R'<<8)|'S';
goto out;
}
elprintf(EL_UIO, "m68k unmapped r16 [%06x] @%06x", a, SekPc);
return d;
out:
elprintf(EL_32X, "m68k 32x r16 [%06x] %04x @%06x", a, d, SekPc);
return d;
}
void PicoWrite8_32x(u32 a, u32 d)
{
if ((a & 0xffc0) == 0x5100) { // a15100
u16 *r = Pico32x.regs;
elprintf(EL_32X, "m68k 32x w8 [%06x] %02x @%06x", a, d & 0xff, SekPc);
a &= 0x3f;
if (a == 1) {
if ((d ^ r[0]) & d & P32XS_ADEN) {
Pico32xStartup();
r[0] &= ~P32XS_nRES; // causes reset if specified by this write
r[0] |= P32XS_ADEN;
p32x_reg_write8(a, d); // forward for reset processing
}
return;
}
// allow only COMM for now
if ((a & 0x30) == 0x20) {
u8 *r8 = (u8 *)r;
r8[a ^ 1] = d;
}
return;
}
elprintf(EL_UIO, "m68k unmapped w8 [%06x] %02x @%06x", a, d & 0xff, SekPc);
}
void PicoWrite16_32x(u32 a, u32 d)
{
if ((a & 0xffc0) == 0x5100) { // a15100
u16 *r = Pico32x.regs;
elprintf(EL_UIO, "m68k 32x w16 [%06x] %04x @%06x", a, d & 0xffff, SekPc);
a &= 0x3e;
if (a == 0) {
if ((d ^ r[0]) & d & P32XS_ADEN) {
Pico32xStartup();
r[0] &= ~P32XS_nRES; // causes reset if specified by this write
r[0] |= P32XS_ADEN;
p32x_reg_write16(a, d); // forward for reset processing
}
return;
}
// allow only COMM for now
if ((a & 0x30) == 0x20)
r[a / 2] = d;
return;
}
elprintf(EL_UIO, "m68k unmapped w16 [%06x] %04x @%06x", a, d & 0xffff, SekPc);
}
// -----------------------------------------------------------------
// hint vector is writeable
static void PicoWrite8_hint(u32 a, u32 d)
{
if ((a & 0xfffc) == 0x0070) {
Pico32xMem->m68k_rom[a ^ 1] = d;
return;
}
elprintf(EL_UIO, "m68k unmapped w8 [%06x] %02x @%06x", a, d & 0xff, SekPc);
}
static void PicoWrite16_hint(u32 a, u32 d)
{
if ((a & 0xfffc) == 0x0070) {
((u16 *)Pico32xMem->m68k_rom)[a/2] = d;
return;
}
elprintf(EL_UIO, "m68k unmapped w16 [%06x] %04x @%06x", a, d & 0xffff, SekPc);
}
static void bank_switch(int b)
{
unsigned int rs, bank;
bank = b << 20;
if (bank >= Pico.romsize) {
elprintf(EL_32X|EL_ANOMALY, "missing bank @ %06x", bank);
return;
}
// 32X ROM (unbanked, XXX: consider mirroring?)
rs = (Pico.romsize + M68K_BANK_MASK) & ~M68K_BANK_MASK;
rs -= bank;
if (rs > 0x100000)
rs = 0x100000;
cpu68k_map_set(m68k_read8_map, 0x900000, 0x900000 + rs - 1, Pico.rom + bank, 0);
cpu68k_map_set(m68k_read16_map, 0x900000, 0x900000 + rs - 1, Pico.rom + bank, 0);
elprintf(EL_32X, "bank %06x-%06x -> %06x", 0x900000, 0x900000 + rs - 1, bank);
#ifdef EMU_F68K
// setup FAME fetchmap
for (rs = 0x90; rs < 0xa0; rs++)
PicoCpuFM68k.Fetch[rs] = (unsigned long)Pico.rom + bank - 0x900000;
#endif
}
// -----------------------------------------------------------------
// SH2
// -----------------------------------------------------------------
// read8
static u32 sh2_read8_unmapped(u32 a, int id)
{
elprintf(EL_UIO, "%csh2 unmapped r8 [%08x] %02x @%06x",
id ? 's' : 'm', a, 0, sh2_pc(id));
return 0;
}
static u32 sh2_read8_cs0(u32 a, int id)
{
u32 d = 0;
// 0x3ff00 is veridied
if ((a & 0x3ff00) == 0x4000) {
d = p32x_sh2reg_read16(a, id);
goto out_16to8;
}
if ((a & 0x3ff00) == 0x4100) {
d = p32x_vdp_read16(a);
if (p32x_poll_detect(&sh2_poll[id], a, ash2_cycles_done(), 1))
ash2_end_run(8);
goto out_16to8;
}
// TODO: mirroring?
if (id == 0 && a < sizeof(Pico32xMem->sh2_rom_m))
return Pico32xMem->sh2_rom_m[a ^ 1];
if (id == 1 && a < sizeof(Pico32xMem->sh2_rom_s))
return Pico32xMem->sh2_rom_s[a ^ 1];
if ((a & 0x3fe00) == 0x4200) {
d = Pico32xMem->pal[(a & 0x1ff) / 2];
goto out_16to8;
}
return sh2_read8_unmapped(a, id);
out_16to8:
if (a & 1)
d &= 0xff;
else
d >>= 8;
elprintf(EL_32X, "%csh2 r8 [%08x] %02x @%06x",
id ? 's' : 'm', a, d, sh2_pc(id));
return d;
}
static u32 sh2_read8_da(u32 a, int id)
{
return Pico32xMem->data_array[id][(a & 0xfff) ^ 1];
}
// read16
static u32 sh2_read16_unmapped(u32 a, int id)
{
elprintf(EL_UIO, "%csh2 unmapped r16 [%08x] %04x @%06x",
id ? 's' : 'm', a, 0, sh2_pc(id));
return 0;
}
static u32 sh2_read16_cs0(u32 a, int id)
{
u32 d = 0;
if ((a & 0x3ff00) == 0x4000) {
d = p32x_sh2reg_read16(a, id);
if (!(EL_LOGMASK & EL_PWM) && (a & 0x30) == 0x30) // hide PWM
return d;
goto out;
}
if ((a & 0x3ff00) == 0x4100) {
d = p32x_vdp_read16(a);
if (p32x_poll_detect(&sh2_poll[id], a, ash2_cycles_done(), 1))
ash2_end_run(8);
goto out;
}
if (id == 0 && a < sizeof(Pico32xMem->sh2_rom_m))
return *(u16 *)(Pico32xMem->sh2_rom_m + a);
if (id == 1 && a < sizeof(Pico32xMem->sh2_rom_s))
return *(u16 *)(Pico32xMem->sh2_rom_s + a);
if ((a & 0x3fe00) == 0x4200) {
d = Pico32xMem->pal[(a & 0x1ff) / 2];
goto out;
}
return sh2_read16_unmapped(a, id);
out:
elprintf(EL_32X, "%csh2 r16 [%08x] %04x @%06x",
id ? 's' : 'm', a, d, sh2_pc(id));
return d;
}
static u32 sh2_read16_da(u32 a, int id)
{
return ((u16 *)Pico32xMem->data_array[id])[(a & 0xfff) / 2];
}
static int REGPARM(3) sh2_write_ignore(u32 a, u32 d, int id)
{
return 0;
}
// write8
static int REGPARM(3) sh2_write8_unmapped(u32 a, u32 d, int id)
{
elprintf(EL_UIO, "%csh2 unmapped w8 [%08x] %02x @%06x",
id ? 's' : 'm', a, d & 0xff, sh2_pc(id));
return 0;
}
static int REGPARM(3) sh2_write8_cs0(u32 a, u32 d, int id)
{
elprintf(EL_32X, "%csh2 w8 [%08x] %02x @%06x",
id ? 's' : 'm', a, d & 0xff, sh2_pc(id));
if ((a & 0x3ff00) == 0x4100) {
p32x_vdp_write8(a, d);
return 0;
}
if ((a & 0x3ff00) == 0x4000) {
p32x_sh2reg_write8(a, d, id);
return 1;
}
return sh2_write8_unmapped(a, d, id);
}
/* quirk: in both normal and overwrite areas only nonzero values go through */
#define sh2_write8_dramN(n) \
if ((d & 0xff) != 0) { \
u8 *dram = (u8 *)Pico32xMem->dram[n]; \
dram[(a & 0x1ffff) ^ 1] = d; \
} \
return 0;
static int REGPARM(3) sh2_write8_dram0(u32 a, u32 d, int id)
{
sh2_write8_dramN(0);
}
static int REGPARM(3) sh2_write8_dram1(u32 a, u32 d, int id)
{
sh2_write8_dramN(1);
}
static int REGPARM(3) sh2_write8_sdram(u32 a, u32 d, int id)
{
u32 a1 = a & 0x3ffff;
#ifdef DRC_SH2
int t = Pico32xMem->drcblk_ram[a1 >> SH2_DRCBLK_RAM_SHIFT];
if (t)
sh2_drc_wcheck_ram(a, t, id);
#endif
Pico32xMem->sdram[a1 ^ 1] = d;
return 0;
}
static int REGPARM(3) sh2_write8_da(u32 a, u32 d, int id)
{
u32 a1 = a & 0xfff;
#ifdef DRC_SH2
int t = Pico32xMem->drcblk_da[id][a1 >> SH2_DRCBLK_DA_SHIFT];
if (t)
sh2_drc_wcheck_da(a, t, id);
#endif
Pico32xMem->data_array[id][a1 ^ 1] = d;
return 0;
}
// write16
static int REGPARM(3) sh2_write16_unmapped(u32 a, u32 d, int id)
{
elprintf(EL_UIO, "%csh2 unmapped w16 [%08x] %04x @%06x",
id ? 's' : 'm', a, d & 0xffff, sh2_pc(id));
return 0;
}
static int REGPARM(3) sh2_write16_cs0(u32 a, u32 d, int id)
{
if (((EL_LOGMASK & EL_PWM) || (a & 0x30) != 0x30)) // hide PWM
elprintf(EL_32X, "%csh2 w16 [%08x] %04x @%06x",
id ? 's' : 'm', a, d & 0xffff, sh2_pc(id));
if ((a & 0x3ff00) == 0x4100) {
sh2_poll[id].cnt = 0; // for poll before VDP accesses
p32x_vdp_write16(a, d);
return 0;
}
if ((a & 0x3fe00) == 0x4200) {
Pico32xMem->pal[(a & 0x1ff) / 2] = d;
Pico32x.dirty_pal = 1;
return 0;
}
if ((a & 0x3ff00) == 0x4000) {
p32x_sh2reg_write16(a, d, id);
return 1;
}
return sh2_write16_unmapped(a, d, id);
}
#define sh2_write16_dramN(n) \
u16 *pd = &Pico32xMem->dram[n][(a & 0x1ffff) / 2]; \
if (!(a & 0x20000)) { \
*pd = d; \
return 0; \
} \
/* overwrite */ \
if (!(d & 0xff00)) d |= *pd & 0xff00; \
if (!(d & 0x00ff)) d |= *pd & 0x00ff; \
*pd = d; \
return 0
static int REGPARM(3) sh2_write16_dram0(u32 a, u32 d, int id)
{
sh2_write16_dramN(0);
}
static int REGPARM(3) sh2_write16_dram1(u32 a, u32 d, int id)
{
sh2_write16_dramN(1);
}
static int REGPARM(3) sh2_write16_sdram(u32 a, u32 d, int id)
{
u32 a1 = a & 0x3ffff;
#ifdef DRC_SH2
int t = Pico32xMem->drcblk_ram[a1 >> SH2_DRCBLK_RAM_SHIFT];
if (t)
sh2_drc_wcheck_ram(a, t, id);
#endif
((u16 *)Pico32xMem->sdram)[a1 / 2] = d;
return 0;
}
static int REGPARM(3) sh2_write16_da(u32 a, u32 d, int id)
{
u32 a1 = a & 0xfff;
#ifdef DRC_SH2
int t = Pico32xMem->drcblk_da[id][a1 >> SH2_DRCBLK_DA_SHIFT];
if (t)
sh2_drc_wcheck_da(a, t, id);
#endif
((u16 *)Pico32xMem->data_array[id])[a1 / 2] = d;
return 0;
}
typedef struct {
uptr addr; // stores (membase >> 1) or ((handler >> 1) | (1<<31))
u32 mask;
} sh2_memmap;
typedef u32 (sh2_read_handler)(u32 a, int id);
typedef int REGPARM(3) (sh2_write_handler)(u32 a, u32 d, int id);
#define SH2MAP_ADDR2OFFS_R(a) \
((((a) >> 25) & 3) | (((a) >> 27) & 0x1c))
#define SH2MAP_ADDR2OFFS_W(a) \
((u32)(a) >> SH2_WRITE_SHIFT)
u32 REGPARM(2) p32x_sh2_read8(u32 a, SH2 *sh2)
{
const sh2_memmap *sh2_map = sh2->read8_map;
uptr p;
sh2_map += SH2MAP_ADDR2OFFS_R(a);
p = sh2_map->addr;
if (map_flag_set(p))
return ((sh2_read_handler *)(p << 1))(a, sh2->is_slave);
else
return *(u8 *)((p << 1) + ((a & sh2_map->mask) ^ 1));
}
u32 REGPARM(2) p32x_sh2_read16(u32 a, SH2 *sh2)
{
const sh2_memmap *sh2_map = sh2->read16_map;
uptr p;
sh2_map += SH2MAP_ADDR2OFFS_R(a);
p = sh2_map->addr;
if (map_flag_set(p))
return ((sh2_read_handler *)(p << 1))(a, sh2->is_slave);
else
return *(u16 *)((p << 1) + ((a & sh2_map->mask) & ~1));
}
u32 REGPARM(2) p32x_sh2_read32(u32 a, SH2 *sh2)
{
const sh2_memmap *sh2_map = sh2->read16_map;
sh2_read_handler *handler;
u32 offs;
uptr p;
offs = SH2MAP_ADDR2OFFS_R(a);
sh2_map += offs;
p = sh2_map->addr;
if (!map_flag_set(p)) {
// XXX: maybe 32bit access instead with ror?
u16 *pd = (u16 *)((p << 1) + ((a & sh2_map->mask) & ~1));
return (pd[0] << 16) | pd[1];
}
if (offs == 0x1f)
return sh2_peripheral_read32(a, sh2->is_slave);
handler = (sh2_read_handler *)(p << 1);
return (handler(a, sh2->is_slave) << 16) | handler(a + 2, sh2->is_slave);
}
// return nonzero if write potentially causes an interrupt (used by drc)
int REGPARM(3) p32x_sh2_write8(u32 a, u32 d, SH2 *sh2)
{
const void **sh2_wmap = sh2->write8_tab;
sh2_write_handler *wh;
wh = sh2_wmap[SH2MAP_ADDR2OFFS_W(a)];
return wh(a, d, sh2->is_slave);
}
int REGPARM(3) p32x_sh2_write16(u32 a, u32 d, SH2 *sh2)
{
const void **sh2_wmap = sh2->write16_tab;
sh2_write_handler *wh;
wh = sh2_wmap[SH2MAP_ADDR2OFFS_W(a)];
return wh(a, d, sh2->is_slave);
}
int REGPARM(3) p32x_sh2_write32(u32 a, u32 d, SH2 *sh2)
{
const void **sh2_wmap = sh2->write16_tab;
sh2_write_handler *handler;
u32 offs;
offs = SH2MAP_ADDR2OFFS_W(a);
if (offs == SH2MAP_ADDR2OFFS_W(0xffffc000)) {
sh2_peripheral_write32(a, d, sh2->is_slave);
return 0;
}
handler = sh2_wmap[offs];
handler(a, d >> 16, sh2->is_slave);
handler(a + 2, d, sh2->is_slave);
return 0;
}
// -----------------------------------------------------------------
static const u16 msh2_code[] = {
// trap instructions
0xaffe, // bra <self>
0x0009, // nop
// have to wait a bit until m68k initial program finishes clearing stuff
// to avoid races with game SH2 code, like in Tempo
0xd004, // mov.l @(_m_ok,pc), r0
0xd105, // mov.l @(_cnt,pc), r1
0xd205, // mov.l @(_start,pc), r2
0x71ff, // add #-1, r1
0x4115, // cmp/pl r1
0x89fc, // bt -2
0xc208, // mov.l r0, @(h'20,gbr)
0x6822, // mov.l @r2, r8
0x482b, // jmp @r8
0x0009, // nop
('M'<<8)|'_', ('O'<<8)|'K',
0x0001, 0x0000,
0x2200, 0x03e0 // master start pointer in ROM
};
static const u16 ssh2_code[] = {
0xaffe, // bra <self>
0x0009, // nop
// code to wait for master, in case authentic master BIOS is used
0xd104, // mov.l @(_m_ok,pc), r1
0xd206, // mov.l @(_start,pc), r2
0xc608, // mov.l @(h'20,gbr), r0
0x3100, // cmp/eq r0, r1
0x8bfc, // bf #-2
0xd003, // mov.l @(_s_ok,pc), r0
0xc209, // mov.l r0, @(h'24,gbr)
0x6822, // mov.l @r2, r8
0x482b, // jmp @r8
0x0009, // nop
('M'<<8)|'_', ('O'<<8)|'K',
('S'<<8)|'_', ('O'<<8)|'K',
0x2200, 0x03e4 // slave start pointer in ROM
};
#define HWSWAP(x) (((x) << 16) | ((x) >> 16))
static void get_bios(void)
{
u16 *ps;
u32 *pl;
int i;
// M68K ROM
if (p32x_bios_g != NULL) {
elprintf(EL_STATUS|EL_32X, "32x: using supplied 68k BIOS");
Byteswap(Pico32xMem->m68k_rom, p32x_bios_g, sizeof(Pico32xMem->m68k_rom));
}
else {
// generate 68k ROM
ps = (u16 *)Pico32xMem->m68k_rom;
pl = (u32 *)ps;
for (i = 1; i < 0xc0/4; i++)
pl[i] = HWSWAP(0x880200 + (i - 1) * 6);
// fill with nops
for (i = 0xc0/2; i < 0x100/2; i++)
ps[i] = 0x4e71;
#if 0
ps[0xc0/2] = 0x46fc;
ps[0xc2/2] = 0x2700; // move #0x2700,sr
ps[0xfe/2] = 0x60fe; // jump to self
#else
ps[0xfe/2] = 0x4e75; // rts
#endif
}
// fill remaining m68k_rom page with game ROM
memcpy(Pico32xMem->m68k_rom_bank + sizeof(Pico32xMem->m68k_rom),
Pico.rom + sizeof(Pico32xMem->m68k_rom),
sizeof(Pico32xMem->m68k_rom_bank) - sizeof(Pico32xMem->m68k_rom));
// MSH2
if (p32x_bios_m != NULL) {
elprintf(EL_STATUS|EL_32X, "32x: using supplied master SH2 BIOS");
Byteswap(Pico32xMem->sh2_rom_m, p32x_bios_m, sizeof(Pico32xMem->sh2_rom_m));
}
else {
pl = (u32 *)Pico32xMem->sh2_rom_m;
// fill exception vector table to our trap address
for (i = 0; i < 128; i++)
pl[i] = HWSWAP(0x200);
// startup code
memcpy(Pico32xMem->sh2_rom_m + 0x200, msh2_code, sizeof(msh2_code));
// reset SP
pl[1] = pl[3] = HWSWAP(0x6040000);
// start
pl[0] = pl[2] = HWSWAP(0x204);
}
// SSH2
if (p32x_bios_s != NULL) {
elprintf(EL_STATUS|EL_32X, "32x: using supplied slave SH2 BIOS");
Byteswap(Pico32xMem->sh2_rom_s, p32x_bios_s, sizeof(Pico32xMem->sh2_rom_s));
}
else {
pl = (u32 *)Pico32xMem->sh2_rom_s;
// fill exception vector table to our trap address
for (i = 0; i < 128; i++)
pl[i] = HWSWAP(0x200);
// startup code
memcpy(Pico32xMem->sh2_rom_s + 0x200, ssh2_code, sizeof(ssh2_code));
// reset SP
pl[1] = pl[3] = HWSWAP(0x603f800);
// start
pl[0] = pl[2] = HWSWAP(0x204);
}
}
#define MAP_MEMORY(m) ((uptr)(m) >> 1)
#define MAP_HANDLER(h) ( ((uptr)(h) >> 1) | ((uptr)1 << (sizeof(uptr) * 8 - 1)) )
static sh2_memmap sh2_read8_map[0x20], sh2_read16_map[0x20];
// for writes we are using handlers only
static sh2_write_handler *sh2_write8_map[0x80], *sh2_write16_map[0x80];
void Pico32xSwapDRAM(int b)
{
cpu68k_map_set(m68k_read8_map, 0x840000, 0x85ffff, Pico32xMem->dram[b], 0);
cpu68k_map_set(m68k_read16_map, 0x840000, 0x85ffff, Pico32xMem->dram[b], 0);
cpu68k_map_set(m68k_write8_map, 0x840000, 0x85ffff, Pico32xMem->dram[b], 0);
cpu68k_map_set(m68k_write16_map, 0x840000, 0x85ffff, Pico32xMem->dram[b], 0);
// SH2
sh2_read8_map[2].addr = sh2_read8_map[6].addr =
sh2_read16_map[2].addr = sh2_read16_map[6].addr = MAP_MEMORY(Pico32xMem->dram[b]);
sh2_write8_map[0x04/2] = sh2_write8_map[0x24/2] = b ? sh2_write8_dram1 : sh2_write8_dram0;
sh2_write16_map[0x04/2] = sh2_write16_map[0x24/2] = b ? sh2_write16_dram1 : sh2_write16_dram0;
}
void PicoMemSetup32x(void)
{
unsigned int rs;
int i;
Pico32xMem = plat_mmap(0x06000000, sizeof(*Pico32xMem), 0, 0);
if (Pico32xMem == NULL) {
elprintf(EL_STATUS, "OOM");
return;
}
dmac0 = (void *)&Pico32xMem->sh2_peri_regs[0][0x180 / 4];
get_bios();
// cartridge area becomes unmapped
// XXX: we take the easy way and don't unmap ROM,
// so that we can avoid handling the RV bit.
// m68k_map_unmap(0x000000, 0x3fffff);
// MD ROM area
rs = sizeof(Pico32xMem->m68k_rom_bank);
cpu68k_map_set(m68k_read8_map, 0x000000, rs - 1, Pico32xMem->m68k_rom_bank, 0);
cpu68k_map_set(m68k_read16_map, 0x000000, rs - 1, Pico32xMem->m68k_rom_bank, 0);
cpu68k_map_set(m68k_write8_map, 0x000000, rs - 1, PicoWrite8_hint, 1); // TODO verify
cpu68k_map_set(m68k_write16_map, 0x000000, rs - 1, PicoWrite16_hint, 1);
// 32X ROM (unbanked, XXX: consider mirroring?)
rs = (Pico.romsize + M68K_BANK_MASK) & ~M68K_BANK_MASK;
if (rs > 0x80000)
rs = 0x80000;
cpu68k_map_set(m68k_read8_map, 0x880000, 0x880000 + rs - 1, Pico.rom, 0);
cpu68k_map_set(m68k_read16_map, 0x880000, 0x880000 + rs - 1, Pico.rom, 0);
#ifdef EMU_F68K
// setup FAME fetchmap
PicoCpuFM68k.Fetch[0] = (unsigned long)Pico32xMem->m68k_rom;
for (rs = 0x88; rs < 0x90; rs++)
PicoCpuFM68k.Fetch[rs] = (unsigned long)Pico.rom - 0x880000;
#endif
// 32X ROM (banked)
bank_switch(0);
// SYS regs
cpu68k_map_set(m68k_read8_map, 0xa10000, 0xa1ffff, PicoRead8_32x_on, 1);
cpu68k_map_set(m68k_read16_map, 0xa10000, 0xa1ffff, PicoRead16_32x_on, 1);
cpu68k_map_set(m68k_write8_map, 0xa10000, 0xa1ffff, PicoWrite8_32x_on, 1);
cpu68k_map_set(m68k_write16_map, 0xa10000, 0xa1ffff, PicoWrite16_32x_on, 1);
// SH2 maps: A31,A30,A29,CS1,CS0
// all unmapped by default
for (i = 0; i < ARRAY_SIZE(sh2_read8_map); i++) {
sh2_read8_map[i].addr = MAP_HANDLER(sh2_read8_unmapped);
sh2_read16_map[i].addr = MAP_HANDLER(sh2_read16_unmapped);
}
for (i = 0; i < ARRAY_SIZE(sh2_write8_map); i++) {
sh2_write8_map[i] = sh2_write8_unmapped;
sh2_write16_map[i] = sh2_write16_unmapped;
}
// "purge area"
for (i = 0x40; i <= 0x5f; i++) {
sh2_write8_map[i >> 1] =
sh2_write16_map[i >> 1] = sh2_write_ignore;
}
// CS0
sh2_read8_map[0].addr = sh2_read8_map[4].addr = MAP_HANDLER(sh2_read8_cs0);
sh2_read16_map[0].addr = sh2_read16_map[4].addr = MAP_HANDLER(sh2_read16_cs0);
sh2_write8_map[0x00/2] = sh2_write8_map[0x20/2] = sh2_write8_cs0;
sh2_write16_map[0x00/2] = sh2_write16_map[0x20/2] = sh2_write16_cs0;
// CS1 - ROM
sh2_read8_map[1].addr = sh2_read8_map[5].addr =
sh2_read16_map[1].addr = sh2_read16_map[5].addr = MAP_MEMORY(Pico.rom);
sh2_read8_map[1].mask = sh2_read8_map[5].mask =
sh2_read16_map[1].mask = sh2_read16_map[5].mask = 0x3fffff; // FIXME
// CS2 - DRAM - done by Pico32xSwapDRAM()
sh2_read8_map[2].mask = sh2_read8_map[6].mask =
sh2_read16_map[2].mask = sh2_read16_map[6].mask = 0x01ffff;
// CS3 - SDRAM
sh2_read8_map[3].addr = sh2_read8_map[7].addr =
sh2_read16_map[3].addr = sh2_read16_map[7].addr = MAP_MEMORY(Pico32xMem->sdram);
sh2_write8_map[0x06/2] = sh2_write8_map[0x26/2] = sh2_write8_sdram;
sh2_write16_map[0x06/2] = sh2_write16_map[0x26/2] = sh2_write16_sdram;
sh2_read8_map[3].mask = sh2_read8_map[7].mask =
sh2_read16_map[3].mask = sh2_read16_map[7].mask = 0x03ffff;
// SH2 data array
sh2_read8_map[0x18].addr = MAP_HANDLER(sh2_read8_da);
sh2_read16_map[0x18].addr = MAP_HANDLER(sh2_read16_da);
sh2_write8_map[0xc0/2] = sh2_write8_da;
sh2_write16_map[0xc0/2] = sh2_write16_da;
// SH2 IO
sh2_read8_map[0x1f].addr = MAP_HANDLER(sh2_peripheral_read8);
sh2_read16_map[0x1f].addr = MAP_HANDLER(sh2_peripheral_read16);
sh2_write8_map[0xff/2] = sh2_peripheral_write8;
sh2_write16_map[0xff/2] = sh2_peripheral_write16;
// map DRAM area, both 68k and SH2
Pico32xSwapDRAM(1);
msh2.read8_map = ssh2.read8_map = sh2_read8_map;
msh2.read16_map = ssh2.read16_map = sh2_read16_map;
msh2.write8_tab = ssh2.write8_tab = (const void **)(void *)sh2_write8_map;
msh2.write16_tab = ssh2.write16_tab = (const void **)(void *)sh2_write16_map;
// setup poll detector
m68k_poll.flag = P32XF_68KPOLL;
m68k_poll.cyc_max = 64;
sh2_poll[0].flag = P32XF_MSH2POLL;
sh2_poll[0].cyc_max = 21;
sh2_poll[1].flag = P32XF_SSH2POLL;
sh2_poll[1].cyc_max = 16;
#ifdef DRC_SH2
sh2_drc_mem_setup(&msh2);
sh2_drc_mem_setup(&ssh2);
#endif
}
void Pico32xStateLoaded(void)
{
bank_switch(Pico32x.regs[4 / 2]);
Pico32xSwapDRAM((Pico32x.vdp_regs[0x0a / 2] & P32XV_FS) ^ P32XV_FS);
p32x_poll_event(3, 0);
Pico32x.dirty_pal = 1;
memset(Pico32xMem->pwm, 0, sizeof(Pico32xMem->pwm));
#ifdef DRC_SH2
sh2_drc_flush_all();
#endif
}
// vim:shiftwidth=2:expandtab