0) {
+ if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); }
+ while(i >= 0) {
+ if(p < k) {
+ d = (this[i]&((1<>(p+=this.DB-k);
+ }
+ else {
+ d = (this[i]>>(p-=k))&km;
+ if(p <= 0) { p += this.DB; --i; }
+ }
+ if(d > 0) m = true;
+ if(m) r += int2char(d);
+ }
+ }
+ return m?r:"0";
+}
+
+// (public) -this
+function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
+
+// (public) |this|
+function bnAbs() { return (this.s<0)?this.negate():this; }
+
+// (public) return + if this > a, - if this < a, 0 if equal
+function bnCompareTo(a) {
+ var r = this.s-a.s;
+ if(r != 0) return r;
+ var i = this.t;
+ r = i-a.t;
+ if(r != 0) return (this.s<0)?-r:r;
+ while(--i >= 0) if((r=this[i]-a[i]) != 0) return r;
+ return 0;
+}
+
+// returns bit length of the integer x
+function nbits(x) {
+ var r = 1, t;
+ if((t=x>>>16) != 0) { x = t; r += 16; }
+ if((t=x>>8) != 0) { x = t; r += 8; }
+ if((t=x>>4) != 0) { x = t; r += 4; }
+ if((t=x>>2) != 0) { x = t; r += 2; }
+ if((t=x>>1) != 0) { x = t; r += 1; }
+ return r;
+}
+
+// (public) return the number of bits in "this"
+function bnBitLength() {
+ if(this.t <= 0) return 0;
+ return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM));
+}
+
+// (protected) r = this << n*DB
+function bnpDLShiftTo(n,r) {
+ var i;
+ for(i = this.t-1; i >= 0; --i) r[i+n] = this[i];
+ for(i = n-1; i >= 0; --i) r[i] = 0;
+ r.t = this.t+n;
+ r.s = this.s;
+}
+
+// (protected) r = this >> n*DB
+function bnpDRShiftTo(n,r) {
+ for(var i = n; i < this.t; ++i) r[i-n] = this[i];
+ r.t = Math.max(this.t-n,0);
+ r.s = this.s;
+}
+
+// (protected) r = this << n
+function bnpLShiftTo(n,r) {
+ var bs = n%this.DB;
+ var cbs = this.DB-bs;
+ var bm = (1<= 0; --i) {
+ r[i+ds+1] = (this[i]>>cbs)|c;
+ c = (this[i]&bm)<= 0; --i) r[i] = 0;
+ r[ds] = c;
+ r.t = this.t+ds+1;
+ r.s = this.s;
+ r.clamp();
+}
+
+// (protected) r = this >> n
+function bnpRShiftTo(n,r) {
+ r.s = this.s;
+ var ds = Math.floor(n/this.DB);
+ if(ds >= this.t) { r.t = 0; return; }
+ var bs = n%this.DB;
+ var cbs = this.DB-bs;
+ var bm = (1<>bs;
+ for(var i = ds+1; i < this.t; ++i) {
+ r[i-ds-1] |= (this[i]&bm)<>bs;
+ }
+ if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<>= this.DB;
+ }
+ if(a.t < this.t) {
+ c -= a.s;
+ while(i < this.t) {
+ c += this[i];
+ r[i++] = c&this.DM;
+ c >>= this.DB;
+ }
+ c += this.s;
+ }
+ else {
+ c += this.s;
+ while(i < a.t) {
+ c -= a[i];
+ r[i++] = c&this.DM;
+ c >>= this.DB;
+ }
+ c -= a.s;
+ }
+ r.s = (c<0)?-1:0;
+ if(c < -1) r[i++] = this.DV+c;
+ else if(c > 0) r[i++] = c;
+ r.t = i;
+ r.clamp();
+}
+
+// (protected) r = this * a, r != this,a (HAC 14.12)
+// "this" should be the larger one if appropriate.
+function bnpMultiplyTo(a,r) {
+ var x = this.abs(), y = a.abs();
+ var i = x.t;
+ r.t = i+y.t;
+ while(--i >= 0) r[i] = 0;
+ for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t);
+ r.s = 0;
+ r.clamp();
+ if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
+}
+
+// (protected) r = this^2, r != this (HAC 14.16)
+function bnpSquareTo(r) {
+ var x = this.abs();
+ var i = r.t = 2*x.t;
+ while(--i >= 0) r[i] = 0;
+ for(i = 0; i < x.t-1; ++i) {
+ var c = x.am(i,x[i],r,2*i,0,1);
+ if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
+ r[i+x.t] -= x.DV;
+ r[i+x.t+1] = 1;
+ }
+ }
+ if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1);
+ r.s = 0;
+ r.clamp();
+}
+
+// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
+// r != q, this != m. q or r may be null.
+function bnpDivRemTo(m,q,r) {
+ var pm = m.abs();
+ if(pm.t <= 0) return;
+ var pt = this.abs();
+ if(pt.t < pm.t) {
+ if(q != null) q.fromInt(0);
+ if(r != null) this.copyTo(r);
+ return;
+ }
+ if(r == null) r = nbi();
+ var y = nbi(), ts = this.s, ms = m.s;
+ var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus
+ if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); }
+ else { pm.copyTo(y); pt.copyTo(r); }
+ var ys = y.t;
+ var y0 = y[ys-1];
+ if(y0 == 0) return;
+ var yt = y0*(1<1)?y[ys-2]>>this.F2:0);
+ var d1 = this.FV/yt, d2 = (1<= 0) {
+ r[r.t++] = 1;
+ r.subTo(t,r);
+ }
+ BigInteger.ONE.dlShiftTo(ys,t);
+ t.subTo(y,y); // "negative" y so we can replace sub with am later
+ while(y.t < ys) y[y.t++] = 0;
+ while(--j >= 0) {
+ // Estimate quotient digit
+ var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2);
+ if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out
+ y.dlShiftTo(j,t);
+ r.subTo(t,r);
+ while(r[i] < --qd) r.subTo(t,r);
+ }
+ }
+ if(q != null) {
+ r.drShiftTo(ys,q);
+ if(ts != ms) BigInteger.ZERO.subTo(q,q);
+ }
+ r.t = ys;
+ r.clamp();
+ if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder
+ if(ts < 0) BigInteger.ZERO.subTo(r,r);
+}
+
+// (public) this mod a
+function bnMod(a) {
+ var r = nbi();
+ this.abs().divRemTo(a,null,r);
+ if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
+ return r;
+}
+
+// Modular reduction using "classic" algorithm
+function Classic(m) { this.m = m; }
+function cConvert(x) {
+ if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
+ else return x;
+}
+function cRevert(x) { return x; }
+function cReduce(x) { x.divRemTo(this.m,null,x); }
+function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
+function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
+
+Classic.prototype.convert = cConvert;
+Classic.prototype.revert = cRevert;
+Classic.prototype.reduce = cReduce;
+Classic.prototype.mulTo = cMulTo;
+Classic.prototype.sqrTo = cSqrTo;
+
+// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
+// justification:
+// xy == 1 (mod m)
+// xy = 1+km
+// xy(2-xy) = (1+km)(1-km)
+// x[y(2-xy)] = 1-k^2m^2
+// x[y(2-xy)] == 1 (mod m^2)
+// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
+// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
+// JS multiply "overflows" differently from C/C++, so care is needed here.
+function bnpInvDigit() {
+ if(this.t < 1) return 0;
+ var x = this[0];
+ if((x&1) == 0) return 0;
+ var y = x&3; // y == 1/x mod 2^2
+ y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
+ y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
+ y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
+ // last step - calculate inverse mod DV directly;
+ // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
+ y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits
+ // we really want the negative inverse, and -DV < y < DV
+ return (y>0)?this.DV-y:-y;
+}
+
+// Montgomery reduction
+function Montgomery(m) {
+ this.m = m;
+ this.mp = m.invDigit();
+ this.mpl = this.mp&0x7fff;
+ this.mph = this.mp>>15;
+ this.um = (1<<(m.DB-15))-1;
+ this.mt2 = 2*m.t;
+}
+
+// xR mod m
+function montConvert(x) {
+ var r = nbi();
+ x.abs().dlShiftTo(this.m.t,r);
+ r.divRemTo(this.m,null,r);
+ if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
+ return r;
+}
+
+// x/R mod m
+function montRevert(x) {
+ var r = nbi();
+ x.copyTo(r);
+ this.reduce(r);
+ return r;
+}
+
+// x = x/R mod m (HAC 14.32)
+function montReduce(x) {
+ while(x.t <= this.mt2) // pad x so am has enough room later
+ x[x.t++] = 0;
+ for(var i = 0; i < this.m.t; ++i) {
+ // faster way of calculating u0 = x[i]*mp mod DV
+ var j = x[i]&0x7fff;
+ var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
+ // use am to combine the multiply-shift-add into one call
+ j = i+this.m.t;
+ x[j] += this.m.am(0,u0,x,i,0,this.m.t);
+ // propagate carry
+ while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; }
+ }
+ x.clamp();
+ x.drShiftTo(this.m.t,x);
+ if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
+}
+
+// r = "x^2/R mod m"; x != r
+function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
+
+// r = "xy/R mod m"; x,y != r
+function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
+
+Montgomery.prototype.convert = montConvert;
+Montgomery.prototype.revert = montRevert;
+Montgomery.prototype.reduce = montReduce;
+Montgomery.prototype.mulTo = montMulTo;
+Montgomery.prototype.sqrTo = montSqrTo;
+
+// (protected) true iff this is even
+function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; }
+
+// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
+function bnpExp(e,z) {
+ if(e > 0xffffffff || e < 1) return BigInteger.ONE;
+ var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
+ g.copyTo(r);
+ while(--i >= 0) {
+ z.sqrTo(r,r2);
+ if((e&(1< 0) z.mulTo(r2,g,r);
+ else { var t = r; r = r2; r2 = t; }
+ }
+ return z.revert(r);
+}
+
+// (public) this^e % m, 0 <= e < 2^32
+function bnModPowInt(e,m) {
+ var z;
+ if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
+ return this.exp(e,z);
+}
+
+// protected
+BigInteger.prototype.copyTo = bnpCopyTo;
+BigInteger.prototype.fromInt = bnpFromInt;
+BigInteger.prototype.fromString = bnpFromString;
+BigInteger.prototype.clamp = bnpClamp;
+BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
+BigInteger.prototype.drShiftTo = bnpDRShiftTo;
+BigInteger.prototype.lShiftTo = bnpLShiftTo;
+BigInteger.prototype.rShiftTo = bnpRShiftTo;
+BigInteger.prototype.subTo = bnpSubTo;
+BigInteger.prototype.multiplyTo = bnpMultiplyTo;
+BigInteger.prototype.squareTo = bnpSquareTo;
+BigInteger.prototype.divRemTo = bnpDivRemTo;
+BigInteger.prototype.invDigit = bnpInvDigit;
+BigInteger.prototype.isEven = bnpIsEven;
+BigInteger.prototype.exp = bnpExp;
+
+// public
+BigInteger.prototype.toString = bnToString;
+BigInteger.prototype.negate = bnNegate;
+BigInteger.prototype.abs = bnAbs;
+BigInteger.prototype.compareTo = bnCompareTo;
+BigInteger.prototype.bitLength = bnBitLength;
+BigInteger.prototype.mod = bnMod;
+BigInteger.prototype.modPowInt = bnModPowInt;
+
+// "constants"
+BigInteger.ZERO = nbv(0);
+BigInteger.ONE = nbv(1);
\ No newline at end of file
diff --git a/jsbn2.js b/jsbn2.js
new file mode 100644
index 0000000..f2e85c2
--- /dev/null
+++ b/jsbn2.js
@@ -0,0 +1,656 @@
+// Copyright (c) 2005-2009 Tom Wu
+// All Rights Reserved.
+// See "LICENSE" for details.
+
+// Extended JavaScript BN functions, required for RSA private ops.
+
+// Version 1.1: new BigInteger("0", 10) returns "proper" zero
+// Version 1.2: square() API, isProbablePrime fix
+
+// (public)
+function bnClone() { var r = nbi(); this.copyTo(r); return r; }
+
+// (public) return value as integer
+function bnIntValue() {
+ if(this.s < 0) {
+ if(this.t == 1) return this[0]-this.DV;
+ else if(this.t == 0) return -1;
+ }
+ else if(this.t == 1) return this[0];
+ else if(this.t == 0) return 0;
+ // assumes 16 < DB < 32
+ return ((this[1]&((1<<(32-this.DB))-1))<>24; }
+
+// (public) return value as short (assumes DB>=16)
+function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; }
+
+// (protected) return x s.t. r^x < DV
+function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
+
+// (public) 0 if this == 0, 1 if this > 0
+function bnSigNum() {
+ if(this.s < 0) return -1;
+ else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
+ else return 1;
+}
+
+// (protected) convert to radix string
+function bnpToRadix(b) {
+ if(b == null) b = 10;
+ if(this.signum() == 0 || b < 2 || b > 36) return "0";
+ var cs = this.chunkSize(b);
+ var a = Math.pow(b,cs);
+ var d = nbv(a), y = nbi(), z = nbi(), r = "";
+ this.divRemTo(d,y,z);
+ while(y.signum() > 0) {
+ r = (a+z.intValue()).toString(b).substr(1) + r;
+ y.divRemTo(d,y,z);
+ }
+ return z.intValue().toString(b) + r;
+}
+
+// (protected) convert from radix string
+function bnpFromRadix(s,b) {
+ this.fromInt(0);
+ if(b == null) b = 10;
+ var cs = this.chunkSize(b);
+ var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
+ for(var i = 0; i < s.length; ++i) {
+ var x = intAt(s,i);
+ if(x < 0) {
+ if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
+ continue;
+ }
+ w = b*w+x;
+ if(++j >= cs) {
+ this.dMultiply(d);
+ this.dAddOffset(w,0);
+ j = 0;
+ w = 0;
+ }
+ }
+ if(j > 0) {
+ this.dMultiply(Math.pow(b,j));
+ this.dAddOffset(w,0);
+ }
+ if(mi) BigInteger.ZERO.subTo(this,this);
+}
+
+// (protected) alternate constructor
+function bnpFromNumber(a,b,c) {
+ if("number" == typeof b) {
+ // new BigInteger(int,int,RNG)
+ if(a < 2) this.fromInt(1);
+ else {
+ this.fromNumber(a,c);
+ if(!this.testBit(a-1)) // force MSB set
+ this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
+ if(this.isEven()) this.dAddOffset(1,0); // force odd
+ while(!this.isProbablePrime(b)) {
+ this.dAddOffset(2,0);
+ if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
+ }
+ }
+ }
+ else {
+ // new BigInteger(int,RNG)
+ var x = new Array(), t = a&7;
+ x.length = (a>>3)+1;
+ b.nextBytes(x);
+ if(t > 0) x[0] &= ((1< 0) {
+ if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p)
+ r[k++] = d|(this.s<<(this.DB-p));
+ while(i >= 0) {
+ if(p < 8) {
+ d = (this[i]&((1<>(p+=this.DB-8);
+ }
+ else {
+ d = (this[i]>>(p-=8))&0xff;
+ if(p <= 0) { p += this.DB; --i; }
+ }
+ if((d&0x80) != 0) d |= -256;
+ if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
+ if(k > 0 || d != this.s) r[k++] = d;
+ }
+ }
+ return r;
+}
+
+function bnEquals(a) { return(this.compareTo(a)==0); }
+function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
+function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
+
+// (protected) r = this op a (bitwise)
+function bnpBitwiseTo(a,op,r) {
+ var i, f, m = Math.min(a.t,this.t);
+ for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]);
+ if(a.t < this.t) {
+ f = a.s&this.DM;
+ for(i = m; i < this.t; ++i) r[i] = op(this[i],f);
+ r.t = this.t;
+ }
+ else {
+ f = this.s&this.DM;
+ for(i = m; i < a.t; ++i) r[i] = op(f,a[i]);
+ r.t = a.t;
+ }
+ r.s = op(this.s,a.s);
+ r.clamp();
+}
+
+// (public) this & a
+function op_and(x,y) { return x&y; }
+function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
+
+// (public) this | a
+function op_or(x,y) { return x|y; }
+function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
+
+// (public) this ^ a
+function op_xor(x,y) { return x^y; }
+function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
+
+// (public) this & ~a
+function op_andnot(x,y) { return x&~y; }
+function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
+
+// (public) ~this
+function bnNot() {
+ var r = nbi();
+ for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i];
+ r.t = this.t;
+ r.s = ~this.s;
+ return r;
+}
+
+// (public) this << n
+function bnShiftLeft(n) {
+ var r = nbi();
+ if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
+ return r;
+}
+
+// (public) this >> n
+function bnShiftRight(n) {
+ var r = nbi();
+ if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
+ return r;
+}
+
+// return index of lowest 1-bit in x, x < 2^31
+function lbit(x) {
+ if(x == 0) return -1;
+ var r = 0;
+ if((x&0xffff) == 0) { x >>= 16; r += 16; }
+ if((x&0xff) == 0) { x >>= 8; r += 8; }
+ if((x&0xf) == 0) { x >>= 4; r += 4; }
+ if((x&3) == 0) { x >>= 2; r += 2; }
+ if((x&1) == 0) ++r;
+ return r;
+}
+
+// (public) returns index of lowest 1-bit (or -1 if none)
+function bnGetLowestSetBit() {
+ for(var i = 0; i < this.t; ++i)
+ if(this[i] != 0) return i*this.DB+lbit(this[i]);
+ if(this.s < 0) return this.t*this.DB;
+ return -1;
+}
+
+// return number of 1 bits in x
+function cbit(x) {
+ var r = 0;
+ while(x != 0) { x &= x-1; ++r; }
+ return r;
+}
+
+// (public) return number of set bits
+function bnBitCount() {
+ var r = 0, x = this.s&this.DM;
+ for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x);
+ return r;
+}
+
+// (public) true iff nth bit is set
+function bnTestBit(n) {
+ var j = Math.floor(n/this.DB);
+ if(j >= this.t) return(this.s!=0);
+ return((this[j]&(1<<(n%this.DB)))!=0);
+}
+
+// (protected) this op (1<>= this.DB;
+ }
+ if(a.t < this.t) {
+ c += a.s;
+ while(i < this.t) {
+ c += this[i];
+ r[i++] = c&this.DM;
+ c >>= this.DB;
+ }
+ c += this.s;
+ }
+ else {
+ c += this.s;
+ while(i < a.t) {
+ c += a[i];
+ r[i++] = c&this.DM;
+ c >>= this.DB;
+ }
+ c += a.s;
+ }
+ r.s = (c<0)?-1:0;
+ if(c > 0) r[i++] = c;
+ else if(c < -1) r[i++] = this.DV+c;
+ r.t = i;
+ r.clamp();
+}
+
+// (public) this + a
+function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
+
+// (public) this - a
+function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
+
+// (public) this * a
+function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
+
+// (public) this^2
+function bnSquare() { var r = nbi(); this.squareTo(r); return r; }
+
+// (public) this / a
+function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
+
+// (public) this % a
+function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
+
+// (public) [this/a,this%a]
+function bnDivideAndRemainder(a) {
+ var q = nbi(), r = nbi();
+ this.divRemTo(a,q,r);
+ return new Array(q,r);
+}
+
+// (protected) this *= n, this >= 0, 1 < n < DV
+function bnpDMultiply(n) {
+ this[this.t] = this.am(0,n-1,this,0,0,this.t);
+ ++this.t;
+ this.clamp();
+}
+
+// (protected) this += n << w words, this >= 0
+function bnpDAddOffset(n,w) {
+ if(n == 0) return;
+ while(this.t <= w) this[this.t++] = 0;
+ this[w] += n;
+ while(this[w] >= this.DV) {
+ this[w] -= this.DV;
+ if(++w >= this.t) this[this.t++] = 0;
+ ++this[w];
+ }
+}
+
+// A "null" reducer
+function NullExp() {}
+function nNop(x) { return x; }
+function nMulTo(x,y,r) { x.multiplyTo(y,r); }
+function nSqrTo(x,r) { x.squareTo(r); }
+
+NullExp.prototype.convert = nNop;
+NullExp.prototype.revert = nNop;
+NullExp.prototype.mulTo = nMulTo;
+NullExp.prototype.sqrTo = nSqrTo;
+
+// (public) this^e
+function bnPow(e) { return this.exp(e,new NullExp()); }
+
+// (protected) r = lower n words of "this * a", a.t <= n
+// "this" should be the larger one if appropriate.
+function bnpMultiplyLowerTo(a,n,r) {
+ var i = Math.min(this.t+a.t,n);
+ r.s = 0; // assumes a,this >= 0
+ r.t = i;
+ while(i > 0) r[--i] = 0;
+ var j;
+ for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t);
+ for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i);
+ r.clamp();
+}
+
+// (protected) r = "this * a" without lower n words, n > 0
+// "this" should be the larger one if appropriate.
+function bnpMultiplyUpperTo(a,n,r) {
+ --n;
+ var i = r.t = this.t+a.t-n;
+ r.s = 0; // assumes a,this >= 0
+ while(--i >= 0) r[i] = 0;
+ for(i = Math.max(n-this.t,0); i < a.t; ++i)
+ r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n);
+ r.clamp();
+ r.drShiftTo(1,r);
+}
+
+// Barrett modular reduction
+function Barrett(m) {
+ // setup Barrett
+ this.r2 = nbi();
+ this.q3 = nbi();
+ BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
+ this.mu = this.r2.divide(m);
+ this.m = m;
+}
+
+function barrettConvert(x) {
+ if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
+ else if(x.compareTo(this.m) < 0) return x;
+ else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
+}
+
+function barrettRevert(x) { return x; }
+
+// x = x mod m (HAC 14.42)
+function barrettReduce(x) {
+ x.drShiftTo(this.m.t-1,this.r2);
+ if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
+ this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
+ this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
+ while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
+ x.subTo(this.r2,x);
+ while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
+}
+
+// r = x^2 mod m; x != r
+function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
+
+// r = x*y mod m; x,y != r
+function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
+
+Barrett.prototype.convert = barrettConvert;
+Barrett.prototype.revert = barrettRevert;
+Barrett.prototype.reduce = barrettReduce;
+Barrett.prototype.mulTo = barrettMulTo;
+Barrett.prototype.sqrTo = barrettSqrTo;
+
+// (public) this^e % m (HAC 14.85)
+function bnModPow(e,m) {
+ var i = e.bitLength(), k, r = nbv(1), z;
+ if(i <= 0) return r;
+ else if(i < 18) k = 1;
+ else if(i < 48) k = 3;
+ else if(i < 144) k = 4;
+ else if(i < 768) k = 5;
+ else k = 6;
+ if(i < 8)
+ z = new Classic(m);
+ else if(m.isEven())
+ z = new Barrett(m);
+ else
+ z = new Montgomery(m);
+
+ // precomputation
+ var g = new Array(), n = 3, k1 = k-1, km = (1< 1) {
+ var g2 = nbi();
+ z.sqrTo(g[1],g2);
+ while(n <= km) {
+ g[n] = nbi();
+ z.mulTo(g2,g[n-2],g[n]);
+ n += 2;
+ }
+ }
+
+ var j = e.t-1, w, is1 = true, r2 = nbi(), t;
+ i = nbits(e[j])-1;
+ while(j >= 0) {
+ if(i >= k1) w = (e[j]>>(i-k1))&km;
+ else {
+ w = (e[j]&((1<<(i+1))-1))<<(k1-i);
+ if(j > 0) w |= e[j-1]>>(this.DB+i-k1);
+ }
+
+ n = k;
+ while((w&1) == 0) { w >>= 1; --n; }
+ if((i -= n) < 0) { i += this.DB; --j; }
+ if(is1) { // ret == 1, don't bother squaring or multiplying it
+ g[w].copyTo(r);
+ is1 = false;
+ }
+ else {
+ while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
+ if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
+ z.mulTo(r2,g[w],r);
+ }
+
+ while(j >= 0 && (e[j]&(1< 0) {
+ x.rShiftTo(g,x);
+ y.rShiftTo(g,y);
+ }
+ while(x.signum() > 0) {
+ if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
+ if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
+ if(x.compareTo(y) >= 0) {
+ x.subTo(y,x);
+ x.rShiftTo(1,x);
+ }
+ else {
+ y.subTo(x,y);
+ y.rShiftTo(1,y);
+ }
+ }
+ if(g > 0) y.lShiftTo(g,y);
+ return y;
+}
+
+// (protected) this % n, n < 2^26
+function bnpModInt(n) {
+ if(n <= 0) return 0;
+ var d = this.DV%n, r = (this.s<0)?n-1:0;
+ if(this.t > 0)
+ if(d == 0) r = this[0]%n;
+ else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n;
+ return r;
+}
+
+// (public) 1/this % m (HAC 14.61)
+function bnModInverse(m) {
+ var ac = m.isEven();
+ if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
+ var u = m.clone(), v = this.clone();
+ var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
+ while(u.signum() != 0) {
+ while(u.isEven()) {
+ u.rShiftTo(1,u);
+ if(ac) {
+ if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
+ a.rShiftTo(1,a);
+ }
+ else if(!b.isEven()) b.subTo(m,b);
+ b.rShiftTo(1,b);
+ }
+ while(v.isEven()) {
+ v.rShiftTo(1,v);
+ if(ac) {
+ if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
+ c.rShiftTo(1,c);
+ }
+ else if(!d.isEven()) d.subTo(m,d);
+ d.rShiftTo(1,d);
+ }
+ if(u.compareTo(v) >= 0) {
+ u.subTo(v,u);
+ if(ac) a.subTo(c,a);
+ b.subTo(d,b);
+ }
+ else {
+ v.subTo(u,v);
+ if(ac) c.subTo(a,c);
+ d.subTo(b,d);
+ }
+ }
+ if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
+ if(d.compareTo(m) >= 0) return d.subtract(m);
+ if(d.signum() < 0) d.addTo(m,d); else return d;
+ if(d.signum() < 0) return d.add(m); else return d;
+}
+
+var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];
+var lplim = (1<<26)/lowprimes[lowprimes.length-1];
+
+// (public) test primality with certainty >= 1-.5^t
+function bnIsProbablePrime(t) {
+ var i, x = this.abs();
+ if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) {
+ for(i = 0; i < lowprimes.length; ++i)
+ if(x[0] == lowprimes[i]) return true;
+ return false;
+ }
+ if(x.isEven()) return false;
+ i = 1;
+ while(i < lowprimes.length) {
+ var m = lowprimes[i], j = i+1;
+ while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
+ m = x.modInt(m);
+ while(i < j) if(m%lowprimes[i++] == 0) return false;
+ }
+ return x.millerRabin(t);
+}
+
+// (protected) true if probably prime (HAC 4.24, Miller-Rabin)
+function bnpMillerRabin(t) {
+ var n1 = this.subtract(BigInteger.ONE);
+ var k = n1.getLowestSetBit();
+ if(k <= 0) return false;
+ var r = n1.shiftRight(k);
+ t = (t+1)>>1;
+ if(t > lowprimes.length) t = lowprimes.length;
+ var a = nbi();
+ for(var i = 0; i < t; ++i) {
+ //Pick bases at random, instead of starting at 2
+ a.fromInt(lowprimes[Math.floor(Math.random()*lowprimes.length)]);
+ var y = a.modPow(r,this);
+ if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
+ var j = 1;
+ while(j++ < k && y.compareTo(n1) != 0) {
+ y = y.modPowInt(2,this);
+ if(y.compareTo(BigInteger.ONE) == 0) return false;
+ }
+ if(y.compareTo(n1) != 0) return false;
+ }
+ }
+ return true;
+}
+
+// protected
+BigInteger.prototype.chunkSize = bnpChunkSize;
+BigInteger.prototype.toRadix = bnpToRadix;
+BigInteger.prototype.fromRadix = bnpFromRadix;
+BigInteger.prototype.fromNumber = bnpFromNumber;
+BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
+BigInteger.prototype.changeBit = bnpChangeBit;
+BigInteger.prototype.addTo = bnpAddTo;
+BigInteger.prototype.dMultiply = bnpDMultiply;
+BigInteger.prototype.dAddOffset = bnpDAddOffset;
+BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
+BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
+BigInteger.prototype.modInt = bnpModInt;
+BigInteger.prototype.millerRabin = bnpMillerRabin;
+
+// public
+BigInteger.prototype.clone = bnClone;
+BigInteger.prototype.intValue = bnIntValue;
+BigInteger.prototype.byteValue = bnByteValue;
+BigInteger.prototype.shortValue = bnShortValue;
+BigInteger.prototype.signum = bnSigNum;
+BigInteger.prototype.toByteArray = bnToByteArray;
+BigInteger.prototype.equals = bnEquals;
+BigInteger.prototype.min = bnMin;
+BigInteger.prototype.max = bnMax;
+BigInteger.prototype.and = bnAnd;
+BigInteger.prototype.or = bnOr;
+BigInteger.prototype.xor = bnXor;
+BigInteger.prototype.andNot = bnAndNot;
+BigInteger.prototype.not = bnNot;
+BigInteger.prototype.shiftLeft = bnShiftLeft;
+BigInteger.prototype.shiftRight = bnShiftRight;
+BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
+BigInteger.prototype.bitCount = bnBitCount;
+BigInteger.prototype.testBit = bnTestBit;
+BigInteger.prototype.setBit = bnSetBit;
+BigInteger.prototype.clearBit = bnClearBit;
+BigInteger.prototype.flipBit = bnFlipBit;
+BigInteger.prototype.add = bnAdd;
+BigInteger.prototype.subtract = bnSubtract;
+BigInteger.prototype.multiply = bnMultiply;
+BigInteger.prototype.divide = bnDivide;
+BigInteger.prototype.remainder = bnRemainder;
+BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
+BigInteger.prototype.modPow = bnModPow;
+BigInteger.prototype.modInverse = bnModInverse;
+BigInteger.prototype.pow = bnPow;
+BigInteger.prototype.gcd = bnGCD;
+BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
+
+// JSBN-specific extension
+BigInteger.prototype.square = bnSquare;
+
+// BigInteger interfaces not implemented in jsbn:
+
+// BigInteger(int signum, byte[] magnitude)
+// double doubleValue()
+// float floatValue()
+// int hashCode()
+// long longValue()
+// static BigInteger valueOf(long val)
\ No newline at end of file
diff --git a/sha1.js b/sha1.js
new file mode 100644
index 0000000..40e77fa
--- /dev/null
+++ b/sha1.js
@@ -0,0 +1,181 @@
+/*
+ * A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined
+ * in FIPS PUB 180-1
+ * Copyright (C) Paul Johnston 2000.
+ * See http://pajhome.org.uk/site/legal.html for details.
+ */
+/*
+ * Modified by Tom Wu (tjw@cs.stanford.edu) for the
+ * SRP JavaScript implementation.
+ */
+
+/*
+ * Convert a 32-bit number to a hex string with ms-byte first
+ */
+var hex_chr = "0123456789abcdef";
+function hex(num)
+{
+ var str = "";
+ for(var j = 7; j >= 0; j--)
+ str += hex_chr.charAt((num >> (j * 4)) & 0x0F);
+ return str;
+}
+
+/*
+ * Convert a string to a sequence of 16-word blocks, stored as an array.
+ * Append padding bits and the length, as described in the SHA1 standard.
+ */
+function str2blks_SHA1(str)
+{
+ var nblk = ((str.length + 8) >> 6) + 1;
+ var blks = new Array(nblk * 16);
+ for(var i = 0; i < nblk * 16; i++) blks[i] = 0;
+ for(i = 0; i < str.length; i++)
+ blks[i >> 2] |= str.charCodeAt(i) << (24 - (i % 4) * 8);
+ blks[i >> 2] |= 0x80 << (24 - (i % 4) * 8);
+ blks[nblk * 16 - 1] = str.length * 8;
+ return blks;
+}
+
+/*
+ * Input is in hex format - trailing odd nibble gets a zero appended.
+ */
+function hex2blks_SHA1(hex)
+{
+ var len = (hex.length + 1) >> 1;
+ var nblk = ((len + 8) >> 6) + 1;
+ var blks = new Array(nblk * 16);
+ for(var i = 0; i < nblk * 16; i++) blks[i] = 0;
+ for(i = 0; i < len; i++)
+ blks[i >> 2] |= parseInt(hex.substr(2*i, 2), 16) << (24 - (i % 4) * 8);
+ blks[i >> 2] |= 0x80 << (24 - (i % 4) * 8);
+ blks[nblk * 16 - 1] = len * 8;
+ return blks;
+}
+
+function ba2blks_SHA1(ba, off, len)
+{
+ var nblk = ((len + 8) >> 6) + 1;
+ var blks = new Array(nblk * 16);
+ for(var i = 0; i < nblk * 16; i++) blks[i] = 0;
+ for(i = 0; i < len; i++)
+ blks[i >> 2] |= (ba[off + i] & 0xFF) << (24 - (i % 4) * 8);
+ blks[i >> 2] |= 0x80 << (24 - (i % 4) * 8);
+ blks[nblk * 16 - 1] = len * 8;
+ return blks;
+}
+
+/*
+ * Add integers, wrapping at 2^32. This uses 16-bit operations internally
+ * to work around bugs in some JS interpreters.
+ */
+function add(x, y)
+{
+ var lsw = (x & 0xFFFF) + (y & 0xFFFF);
+ var msw = (x >> 16) + (y >> 16) + (lsw >> 16);
+ return (msw << 16) | (lsw & 0xFFFF);
+}
+
+/*
+ * Bitwise rotate a 32-bit number to the left
+ */
+function rol(num, cnt)
+{
+ return (num << cnt) | (num >>> (32 - cnt));
+}
+
+/*
+ * Perform the appropriate triplet combination function for the current
+ * iteration
+ */
+function ft(t, b, c, d)
+{
+ if(t < 20) return (b & c) | ((~b) & d);
+ if(t < 40) return b ^ c ^ d;
+ if(t < 60) return (b & c) | (b & d) | (c & d);
+ return b ^ c ^ d;
+}
+
+/*
+ * Determine the appropriate additive constant for the current iteration
+ */
+function kt(t)
+{
+ return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 :
+ (t < 60) ? -1894007588 : -899497514;
+}
+
+/*
+ * Take a string and return the hex representation of its SHA-1.
+ */
+function calcSHA1(str)
+{
+ return calcSHA1Blks(str2blks_SHA1(str));
+}
+
+function calcSHA1Hex(str)
+{
+ return calcSHA1Blks(hex2blks_SHA1(str));
+}
+
+function calcSHA1BA(ba)
+{
+ return calcSHA1Blks(ba2blks_SHA1(ba, 0, ba.length));
+}
+
+function calcSHA1BAEx(ba, off, len)
+{
+ return calcSHA1Blks(ba2blks_SHA1(ba, off, len));
+}
+
+function calcSHA1Blks(x)
+{
+ var s = calcSHA1Raw(x);
+ return hex(s[0]) + hex(s[1]) + hex(s[2]) + hex(s[3]) + hex(s[4]);
+}
+
+function calcSHA1Raw(x)
+{
+ var w = new Array(80);
+
+ var a = 1732584193;
+ var b = -271733879;
+ var c = -1732584194;
+ var d = 271733878;
+ var e = -1009589776;
+
+ for(var i = 0; i < x.length; i += 16)
+ {
+ var olda = a;
+ var oldb = b;
+ var oldc = c;
+ var oldd = d;
+ var olde = e;
+
+ for(var j = 0; j < 80; j++)
+ {
+ var t;
+ if(j < 16) w[j] = x[i + j];
+ else w[j] = rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1);
+ t = add(add(rol(a, 5), ft(j, b, c, d)), add(add(e, w[j]), kt(j)));
+ e = d;
+ d = c;
+ c = rol(b, 30);
+ b = a;
+ a = t;
+ }
+
+ a = add(a, olda);
+ b = add(b, oldb);
+ c = add(c, oldc);
+ d = add(d, oldd);
+ e = add(e, olde);
+ }
+ return new Array(a, b, c, d, e);
+}
+
+function core_sha1(x, len) {
+ x[len >> 5] |= 0x80 << (24 - len % 32)
+ x[((len + 64 >> 9) << 4) + 15] = len
+ return calcSHA1Raw(x)
+}
\ No newline at end of file