/* * A JavaScript implementation of the Secure Hash Algorithm, SHA-1, as defined * in FIPS PUB 180-1 * Copyright (C) Paul Johnston 2000. * See http://pajhome.org.uk/site/legal.html for details. */ /* * Modified by Tom Wu (tjw@cs.stanford.edu) for the * SRP JavaScript implementation. */ /* * Convert a 32-bit number to a hex string with ms-byte first */ var hex_chr = "0123456789abcdef"; function hex(num) { var str = ""; for(var j = 7; j >= 0; j--) str += hex_chr.charAt((num >> (j * 4)) & 0x0F); return str; } /* * Convert a string to a sequence of 16-word blocks, stored as an array. * Append padding bits and the length, as described in the SHA1 standard. */ function str2blks_SHA1(str) { var nblk = ((str.length + 8) >> 6) + 1; var blks = new Array(nblk * 16); for(var i = 0; i < nblk * 16; i++) blks[i] = 0; for(i = 0; i < str.length; i++) blks[i >> 2] |= str.charCodeAt(i) << (24 - (i % 4) * 8); blks[i >> 2] |= 0x80 << (24 - (i % 4) * 8); blks[nblk * 16 - 1] = str.length * 8; return blks; } /* * Input is in hex format - trailing odd nibble gets a zero appended. */ function hex2blks_SHA1(hex) { var len = (hex.length + 1) >> 1; var nblk = ((len + 8) >> 6) + 1; var blks = new Array(nblk * 16); for(var i = 0; i < nblk * 16; i++) blks[i] = 0; for(i = 0; i < len; i++) blks[i >> 2] |= parseInt(hex.substr(2*i, 2), 16) << (24 - (i % 4) * 8); blks[i >> 2] |= 0x80 << (24 - (i % 4) * 8); blks[nblk * 16 - 1] = len * 8; return blks; } function ba2blks_SHA1(ba, off, len) { var nblk = ((len + 8) >> 6) + 1; var blks = new Array(nblk * 16); for(var i = 0; i < nblk * 16; i++) blks[i] = 0; for(i = 0; i < len; i++) blks[i >> 2] |= (ba[off + i] & 0xFF) << (24 - (i % 4) * 8); blks[i >> 2] |= 0x80 << (24 - (i % 4) * 8); blks[nblk * 16 - 1] = len * 8; return blks; } /* * Add integers, wrapping at 2^32. This uses 16-bit operations internally * to work around bugs in some JS interpreters. */ function add(x, y) { var lsw = (x & 0xFFFF) + (y & 0xFFFF); var msw = (x >> 16) + (y >> 16) + (lsw >> 16); return (msw << 16) | (lsw & 0xFFFF); } /* * Bitwise rotate a 32-bit number to the left */ function rol(num, cnt) { return (num << cnt) | (num >>> (32 - cnt)); } /* * Perform the appropriate triplet combination function for the current * iteration */ function ft(t, b, c, d) { if(t < 20) return (b & c) | ((~b) & d); if(t < 40) return b ^ c ^ d; if(t < 60) return (b & c) | (b & d) | (c & d); return b ^ c ^ d; } /* * Determine the appropriate additive constant for the current iteration */ function kt(t) { return (t < 20) ? 1518500249 : (t < 40) ? 1859775393 : (t < 60) ? -1894007588 : -899497514; } /* * Take a string and return the hex representation of its SHA-1. */ function calcSHA1(str) { return calcSHA1Blks(str2blks_SHA1(str)); } function calcSHA1Hex(str) { return calcSHA1Blks(hex2blks_SHA1(str)); } function calcSHA1BA(ba) { return calcSHA1Blks(ba2blks_SHA1(ba, 0, ba.length)); } function calcSHA1BAEx(ba, off, len) { return calcSHA1Blks(ba2blks_SHA1(ba, off, len)); } function calcSHA1Blks(x) { var s = calcSHA1Raw(x); return hex(s[0]) + hex(s[1]) + hex(s[2]) + hex(s[3]) + hex(s[4]); } function calcSHA1Raw(x) { var w = new Array(80); var a = 1732584193; var b = -271733879; var c = -1732584194; var d = 271733878; var e = -1009589776; for(var i = 0; i < x.length; i += 16) { var olda = a; var oldb = b; var oldc = c; var oldd = d; var olde = e; for(var j = 0; j < 80; j++) { var t; if(j < 16) w[j] = x[i + j]; else w[j] = rol(w[j-3] ^ w[j-8] ^ w[j-14] ^ w[j-16], 1); t = add(add(rol(a, 5), ft(j, b, c, d)), add(add(e, w[j]), kt(j))); e = d; d = c; c = rol(b, 30); b = a; a = t; } a = add(a, olda); b = add(b, oldb); c = add(c, oldc); d = add(d, oldd); e = add(e, olde); } return new Array(a, b, c, d, e); } function core_sha1(x, len) { x[len >> 5] |= 0x80 << (24 - len % 32) x[((len + 64 >> 9) << 4) + 15] = len return calcSHA1Raw(x) }